File size: 119,262 Bytes
1395bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
========================
START TIME: Wed Jul  3 21:09:37 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] 
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] *****************************************
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 21:09:56 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config:
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            run='%date_%jobid',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            seed=42,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            step=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            consumed_train_samples=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            benchmark_csv_path=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            ignore_sanity_checks=True),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    pp=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp=4,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f92592bc940>,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp_linear_async_communication=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    expert_parallel_size=1),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 eos_token_id=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 hidden_act='silu',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 hidden_size=2048,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 initializer_range=0.02,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 intermediate_size=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 is_llama_config=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 max_position_embeddings=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_attention_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_hidden_layers=24,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_key_value_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 pad_token_id=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 pretraining_tp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rms_norm_eps=1e-05,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rope_scaling=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rope_theta=10000.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 tie_word_embeddings=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 use_cache=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 vocab_size=50260),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        init_method=RandomInit(std=0.025),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        dtype=torch.bfloat16,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        make_vocab_size_divisible_by=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        ddp_bucket_cap_mb=25),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                tokenizer_revision=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                tokenizer_max_length=None),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    checkpoint_interval=100000,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    save_initial_state=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    resume_checkpoint_path=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            log_level_replica='info',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            iteration_step_info_interval=1),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          train_steps=20,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          micro_batch_size=128,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          batch_accumulation_per_replica=8,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          val_check_interval=-1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          limit_val_batches=0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          limit_test_batches=0),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     adam_beta1=0.9,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     adam_beta2=0.95,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     torch_adam_is_fused=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     name='adamW'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                zero_stage=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                weight_decay=0.01,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                clip_grad=1.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                accumulate_grad_in_fp32=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_warmup_steps=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_warmup_style='linear',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_style='linear',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_steps=19,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_starting_step=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        min_decay_lr=1e-05)),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                      start_training_step=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 hf_dataset_splits='train',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 hf_dataset_config_name=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 text_column_name='text'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                    seed=42,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                    num_loading_workers=0))],
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-4_pp-2_mbz-128')),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        lighteval=None)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Model Config:
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             eos_token_id=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             hidden_act='silu',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             hidden_size=2048,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             initializer_range=0.02,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             intermediate_size=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             is_llama_config=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             max_position_embeddings=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_attention_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_hidden_layers=24,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_key_value_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             pad_token_id=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             pretraining_tp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rms_norm_eps=1e-05,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rope_scaling=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rope_theta=10000.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             tie_word_embeddings=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             use_cache=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             vocab_size=50260)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Building model..
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Setting PP block ranks...
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Total number of parameters: 1.21G (2313.42MiB)
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Parametrizing model parameters using StandardParametrizator
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: No checkpoint path provided.
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: No checkpoint path provided.
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: No checkpoint path provided.
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: No checkpoint path provided.
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: No checkpoint path provided.
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 0 has 173M out of 173M (100.00%) params' optimizer states
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Using `datasets` library
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 21:10:12 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] There are 1 training stages 
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Stage Training Stage] start from step 1 
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: 
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Start training] datetime: 2024-07-03 21:10:13.140040 | mbs: 128 | grad_accum: 8 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 1660.89MiB. Peak allocated 1660.89MiB. Peak reserved: 1668.00MiB
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=3|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=2|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=1|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=1|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=3|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=2|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]:     trainer.train(dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]:     outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]:     output = model(**micro_batch)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank2]:     sharded_logits = self.model(
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]:     output = self.pp_block(**new_kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default2]:[rank2]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default2]:[rank2]:     hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default2]:[rank2]:     return row_linear(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default2]:[rank2]:     out = differentiable_reduce_scatter_sum(out, group=group)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default2]:[rank2]:     return DifferentiableReduceScatterSum.apply(tensor, group)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default2]:[rank2]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default2]:[rank2]:     sharded_tensor = torch.empty(
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 209.94 MiB is free. Including non-PyTorch memory, this process has 79.11 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]:     trainer.train(dataloader)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]:     outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default0]:[rank0]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]:     output = model(**micro_batch)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]:     sharded_logits = self.model(
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank0]:     output = self.pp_block(**new_kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default0]:[rank0]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default0]:[rank0]:     hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default0]:[rank0]:     return row_linear(
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default0]:[rank0]:     out = differentiable_reduce_scatter_sum(out, group=group)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default0]:[rank0]:     return DifferentiableReduceScatterSum.apply(tensor, group)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default0]:[rank0]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default0]:[rank0]:     sharded_tensor = torch.empty(
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU 
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]:     trainer.train(dataloader)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]:     outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default1]:[rank1]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]:     output = model(**micro_batch)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]:     sharded_logits = self.model(
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]:     output = self.pp_block(**new_kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default1]:[rank1]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default1]:[rank1]:     hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default1]:[rank1]:     return row_linear(
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default1]:[rank1]:     out = differentiable_reduce_scatter_sum(out, group=group)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default1]:[rank1]:     return DifferentiableReduceScatterSum.apply(tensor, group)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default1]:[rank1]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default1]:[rank1]:     sharded_tensor = torch.empty(
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 209.94 MiB is free. Including non-PyTorch memory, this process has 79.11 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default3]:[rank3]: Traceback (most recent call last):
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]:     trainer.train(dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default3]:[rank3]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default3]:[rank3]:     outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default3]:[rank3]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default3]:[rank3]:     output = model(**micro_batch)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]:     sharded_logits = self.model(
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default3]:[rank3]:     output = self.pp_block(**new_kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default3]:[rank3]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default3]:[rank3]:     hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default3]:[rank3]:     return row_linear(
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default3]:[rank3]:     out = differentiable_reduce_scatter_sum(out, group=group)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default3]:[rank3]:     return DifferentiableReduceScatterSum.apply(tensor, group)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default3]:[rank3]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default3]:[rank3]:     sharded_tensor = torch.empty(
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 449.94 MiB is free. Including non-PyTorch memory, this process has 78.88 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]:     trainer.train(dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]:     outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]:     output = model(**micro_batch)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]:     sharded_logits = self.model(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default7]:[rank7]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default7]:[rank7]:     pipeline_state.run_communication()
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default7]:[rank7]:     recv_activation_tensor = recv_activation()
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default7]:[rank7]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default7]:[rank7]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default7]:[rank7]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default7]:[rank7]:     dist.recv(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default7]:[rank7]:     return func(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default7]:[rank7]:     pg.recv([tensor], group_src_rank, tag).wait()
[default7]:[rank7]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default7]:[rank7]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default7]:[rank7]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7ff4dcdd9897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:[rank7]: frame #1: <unknown function> + 0x5b3a23e (0x7ff5168f623e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7ff5168f0c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7ff5168f0f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7ff5168f1fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7ff4de0b3189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7ff4de0ba610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7ff4de0d9978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #12: <unknown function> + 0x5adc309 (0x7ff516898309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #13: <unknown function> + 0x5ae6f10 (0x7ff5168a2f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #14: <unknown function> + 0x5ae6fa5 (0x7ff5168a2fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #15: <unknown function> + 0x5124446 (0x7ff515ee0446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #16: <unknown function> + 0x1acf4b8 (0x7ff51288b4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #17: <unknown function> + 0x5aee004 (0x7ff5168aa004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #18: <unknown function> + 0x5af36b5 (0x7ff5168af6b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #19: <unknown function> + 0xd2631e (0x7ff52949931e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #20: <unknown function> + 0x47def4 (0x7ff528bf0ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #21: <unknown function> + 0x1445a6 (0x558e2e9a75a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #22: _PyObject_MakeTpCall + 0x26b (0x558e2e9a0a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #23: <unknown function> + 0x150866 (0x558e2e9b3866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x558e2e99c142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #25: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #26: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #28: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #30: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #32: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #34: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x558e2e99ff50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #37: _PyObject_Call_Prepend + 0x69 (0x558e2e9b1c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #38: <unknown function> + 0x211239 (0x558e2ea74239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #39: _PyObject_MakeTpCall + 0x26b (0x558e2e9a0a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x558e2e99c3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #41: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x558e2e997c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #43: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #45: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #46: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #48: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #49: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #51: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x558e2e9a0007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #53: _PyObject_Call_Prepend + 0x69 (0x558e2e9b1c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #54: <unknown function> + 0x211239 (0x558e2ea74239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #55: PyObject_Call + 0x207 (0x558e2e9b4067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #57: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #59: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #60: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #62: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #63: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]:     trainer.train(dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]:     outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]:     output = model(**micro_batch)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]:     sharded_logits = self.model(
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]: Traceback (most recent call last):
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank5]:     trainer.train(dataloader)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank5]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:     outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default5]:[rank5]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank5]:     output = model(**micro_batch)
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]:     pipeline_state.run_communication()
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank5]:     sharded_logits = self.model(
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]:     recv_activation_tensor = recv_activation()
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default5]:[rank5]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default5]:[rank5]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default5]:[rank5]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default5]:[rank5]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]:     dist.recv(
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default6]:[rank6]:     return func(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default6]:[rank6]:     pg.recv([tensor], group_src_rank, tag).wait()
[default5]:[rank5]:     pipeline_state.run_communication()
[default6]:[rank6]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default5]:[rank5]:     recv_activation_tensor = recv_activation()
[default6]:[rank6]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fa95637d897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default6]:[rank6]: frame #1: <unknown function> + 0x5b3a23e (0x7fa98fe9a23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default6]:[rank6]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fa98fe94c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fa98fe94f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fa98fe95fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default6]:[rank6]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default6]:[rank6]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default6]:[rank6]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fa957657189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fa95765e610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fa95767d978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #12: <unknown function> + 0x5adc309 (0x7fa98fe3c309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #13: <unknown function> + 0x5ae6f10 (0x7fa98fe46f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:     dist.recv(
[default6]:[rank6]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fa98fe46fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default6]:[rank6]: frame #15: <unknown function> + 0x5124446 (0x7fa98f484446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #16: <unknown function> + 0x1acf4b8 (0x7fa98be2f4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #17: <unknown function> + 0x5aee004 (0x7fa98fe4e004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #18: <unknown function> + 0x5af36b5 (0x7fa98fe536b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #19: <unknown function> + 0xd2631e (0x7fa9a2a3d31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #20: <unknown function> + 0x47def4 (0x7fa9a2194ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default5]:[rank5]:     return func(*args, **kwargs)
[default5]:[rank5]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default5]:[rank5]:     pg.recv([tensor], group_src_rank, tag).wait()
[default5]:[rank5]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default6]:[rank6]: frame #21: <unknown function> + 0x1445a6 (0x55bd94df15a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default5]:[rank5]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f5034b31897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:[rank6]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55bd94deaa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #1: <unknown function> + 0x5b3a23e (0x7f506e64e23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #23: <unknown function> + 0x150866 (0x55bd94dfd866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7f506e648c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f506e648f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55bd94de6142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #26: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f506e649fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #30: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f5035e0b189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f5035e12610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7f5035e31978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #12: <unknown function> + 0x5adc309 (0x7f506e5f0309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #13: <unknown function> + 0x5ae6f10 (0x7f506e5faf10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #32: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #14: <unknown function> + 0x5ae6fa5 (0x7f506e5fafa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #15: <unknown function> + 0x5124446 (0x7f506dc38446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #34: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55bd94de9f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55bd94dfbc39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #38: <unknown function> + 0x211239 (0x55bd94ebe239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55bd94deaa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #16: <unknown function> + 0x1acf4b8 (0x7f506a5e34b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55bd94de63e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55bd94de1c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #45: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #46: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #48: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #49: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55bd94dea007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55bd94dfbc39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #54: <unknown function> + 0x211239 (0x55bd94ebe239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #55: PyObject_Call + 0x207 (0x55bd94dfe067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #57: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #17: <unknown function> + 0x5aee004 (0x7f506e602004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #59: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #18: <unknown function> + 0x5af36b5 (0x7f506e6076b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #60: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #19: <unknown function> + 0xd2631e (0x7f50811f131e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #20: <unknown function> + 0x47def4 (0x7f5080948ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #62: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #21: <unknown function> + 0x1445a6 (0x55f9b078e5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55f9b0787a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #63: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #23: <unknown function> + 0x150866 (0x55f9b079a866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default5]:[rank5]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55f9b0783142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #26: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #30: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #32: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #34: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55f9b0786f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55f9b0798c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #38: <unknown function> + 0x211239 (0x55f9b085b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55f9b0787a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55f9b07833e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55f9b077ec5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #45: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #46: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #48: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #49: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55f9b0787007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55f9b0798c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #54: <unknown function> + 0x211239 (0x55f9b085b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #55: PyObject_Call + 0x207 (0x55f9b079b067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #57: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #59: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #60: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #62: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #63: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]:     trainer.train(dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]:     outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]:     output = model(**micro_batch)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]:     sharded_logits = self.model(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]:     pipeline_state.run_communication()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default4]:[rank4]:     recv_activation_tensor = recv_activation()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default4]:[rank4]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default4]:[rank4]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default4]:[rank4]:     dist.recv(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default4]:[rank4]:     return func(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default4]:[rank4]:     pg.recv([tensor], group_src_rank, tag).wait()
[default4]:[rank4]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default4]:[rank4]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default4]:[rank4]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fd7ed516897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:[rank4]: frame #1: <unknown function> + 0x5b3a23e (0x7fd82703323e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fd82702dc87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fd82702df82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fd82702efd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fd7ee7f0189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fd7ee7f7610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fd7ee816978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #12: <unknown function> + 0x5adc309 (0x7fd826fd5309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #13: <unknown function> + 0x5ae6f10 (0x7fd826fdff10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fd826fdffa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #15: <unknown function> + 0x5124446 (0x7fd82661d446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #16: <unknown function> + 0x1acf4b8 (0x7fd822fc84b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #17: <unknown function> + 0x5aee004 (0x7fd826fe7004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #18: <unknown function> + 0x5af36b5 (0x7fd826fec6b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #19: <unknown function> + 0xd2631e (0x7fd839bd631e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #20: <unknown function> + 0x47def4 (0x7fd83932def4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #21: <unknown function> + 0x1445a6 (0x56122d74e5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #22: _PyObject_MakeTpCall + 0x26b (0x56122d747a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #23: <unknown function> + 0x150866 (0x56122d75a866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x56122d743142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #25: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #26: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #28: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #30: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #32: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #34: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x56122d746f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #37: _PyObject_Call_Prepend + 0x69 (0x56122d758c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #38: <unknown function> + 0x211239 (0x56122d81b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #39: _PyObject_MakeTpCall + 0x26b (0x56122d747a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x56122d7433e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #41: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x56122d73ec5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #43: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #45: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #46: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #48: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #49: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #51: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x56122d747007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #53: _PyObject_Call_Prepend + 0x69 (0x56122d758c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #54: <unknown function> + 0x211239 (0x56122d81b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #55: PyObject_Call + 0x207 (0x56122d75b067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #57: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #59: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #60: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #62: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #63: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: . This may indicate a possible application crash on rank 0 or a network set up issue.
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218723 closing signal SIGTERM
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218724 closing signal SIGTERM
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218725 closing signal SIGTERM
W0703 21:10:20.046000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218726 closing signal SIGTERM
E0703 21:10:21.164000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 218719) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
  time      : 2024-07-03_21:10:20
  host      : ip-26-0-174-36.ec2.internal
  rank      : 1 (local_rank: 1)
  exitcode  : 1 (pid: 218720)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
  time      : 2024-07-03_21:10:20
  host      : ip-26-0-174-36.ec2.internal
  rank      : 2 (local_rank: 2)
  exitcode  : 1 (pid: 218721)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
  time      : 2024-07-03_21:10:20
  host      : ip-26-0-174-36.ec2.internal
  rank      : 3 (local_rank: 3)
  exitcode  : 1 (pid: 218722)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-03_21:10:20
  host      : ip-26-0-174-36.ec2.internal
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 218719)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-174-36: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.