File size: 119,262 Bytes
1395bd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
========================
START TIME: Wed Jul 3 21:09:37 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757]
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] *****************************************
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 21:09:39.763000 140415295817536 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 21:09:56 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config:
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: run='%date_%jobid',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: seed=42,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: step=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: consumed_train_samples=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: benchmark_csv_path=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: ignore_sanity_checks=True),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pp=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp=4,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f92592bc940>,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp_linear_async_communication=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: expert_parallel_size=1),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: eos_token_id=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_act='silu',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_size=2048,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: initializer_range=0.02,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: intermediate_size=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: is_llama_config=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: max_position_embeddings=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_attention_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_hidden_layers=24,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_key_value_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pad_token_id=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pretraining_tp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rms_norm_eps=1e-05,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_scaling=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_theta=10000.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tie_word_embeddings=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: use_cache=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: vocab_size=50260),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dtype=torch.bfloat16,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer_revision=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer_max_length=None),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoint_interval=100000,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: save_initial_state=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: resume_checkpoint_path=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: log_level_replica='info',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: iteration_step_info_interval=1),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: train_steps=20,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: micro_batch_size=128,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: batch_accumulation_per_replica=8,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: val_check_interval=-1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: limit_val_batches=0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: limit_test_batches=0),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: adam_beta1=0.9,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: adam_beta2=0.95,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: torch_adam_is_fused=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: name='adamW'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: zero_stage=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: weight_decay=0.01,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: clip_grad=1.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_warmup_steps=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_warmup_style='linear',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_style='linear',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_steps=19,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_starting_step=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: min_decay_lr=1e-05)),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: start_training_step=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hf_dataset_splits='train',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hf_dataset_config_name=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dataset_overwrite_cache=False,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: text_column_name='text'),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: seed=42,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_loading_workers=0))],
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-4_pp-2_mbz-128')),
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lighteval=None)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Model Config:
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: eos_token_id=2,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_act='silu',
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_size=2048,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: initializer_range=0.02,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: intermediate_size=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: is_llama_config=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: max_position_embeddings=4096,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_attention_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_hidden_layers=24,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_key_value_heads=32,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pad_token_id=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pretraining_tp=1,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rms_norm_eps=1e-05,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_scaling=None,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_theta=10000.0,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tie_word_embeddings=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: use_cache=True,
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: vocab_size=50260)
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Building model..
[default0]:07/03/2024 21:09:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Setting PP block ranks...
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Total number of parameters: 1.21G (2313.42MiB)
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Parametrizing model parameters using StandardParametrizator
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default7]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=3|ip-26-0-174-36]: No checkpoint path provided.
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default5]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=1|ip-26-0-174-36]: No checkpoint path provided.
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default2]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=2|ip-26-0-174-36]: No checkpoint path provided.
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default1]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=1|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: Local number of parameters: 173M (329.19MiB)
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default3]:07/03/2024 21:10:09 [INFO|DP=0|PP=0|TP=3|ip-26-0-174-36]: No checkpoint path provided.
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default6]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=2|ip-26-0-174-36]: No checkpoint path provided.
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: Local number of parameters: 131M (249.16MiB)
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default4]:07/03/2024 21:10:09 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 21:10:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 0 has 173M out of 173M (100.00%) params' optimizer states
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Using `datasets` library
[default0]:07/03/2024 21:10:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 21:10:12 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Start training] datetime: 2024-07-03 21:10:13.140040 | mbs: 128 | grad_accum: 8 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 21:10:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 1660.89MiB. Peak allocated 1660.89MiB. Peak reserved: 1668.00MiB
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=3|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=2|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=1|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=1|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 21:10:13 [WARNING|DP=0|PP=0|TP=3|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=2|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 21:10:13 [WARNING|DP=0|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]: trainer.train(dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]: output = model(**micro_batch)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank2]: sharded_logits = self.model(
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]: output = self.pp_block(**new_kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default2]:[rank2]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default2]:[rank2]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default2]:[rank2]: return row_linear(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default2]:[rank2]: out = differentiable_reduce_scatter_sum(out, group=group)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default2]:[rank2]: return DifferentiableReduceScatterSum.apply(tensor, group)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default2]:[rank2]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default2]:[rank2]: sharded_tensor = torch.empty(
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 209.94 MiB is free. Including non-PyTorch memory, this process has 79.11 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]: trainer.train(dataloader)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]: output = model(**micro_batch)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]: sharded_logits = self.model(
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default0]:[rank0]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default0]:[rank0]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default0]:[rank0]: return row_linear(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default0]:[rank0]: out = differentiable_reduce_scatter_sum(out, group=group)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default0]:[rank0]: return DifferentiableReduceScatterSum.apply(tensor, group)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default0]:[rank0]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default0]:[rank0]: sharded_tensor = torch.empty(
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]: trainer.train(dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: output = model(**micro_batch)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]: sharded_logits = self.model(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default1]:[rank1]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default1]:[rank1]: return row_linear(
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default1]:[rank1]: out = differentiable_reduce_scatter_sum(out, group=group)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default1]:[rank1]: return DifferentiableReduceScatterSum.apply(tensor, group)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default1]:[rank1]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default1]:[rank1]: sharded_tensor = torch.empty(
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 209.94 MiB is free. Including non-PyTorch memory, this process has 79.11 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default3]:[rank3]: Traceback (most recent call last):
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]: trainer.train(dataloader)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default3]:[rank3]: output = model(**micro_batch)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]: sharded_logits = self.model(
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default3]:[rank3]: output = self.pp_block(**new_kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default3]:[rank3]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default3]:[rank3]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default3]:[rank3]: return row_linear(
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 479, in row_linear
[default3]:[rank3]: out = differentiable_reduce_scatter_sum(out, group=group)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 145, in differentiable_reduce_scatter_sum
[default3]:[rank3]: return DifferentiableReduceScatterSum.apply(tensor, group)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default3]:[rank3]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/distributed_differentiable_primitives.py", line 111, in forward
[default3]:[rank3]: sharded_tensor = torch.empty(
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 449.94 MiB is free. Including non-PyTorch memory, this process has 78.88 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 416.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]: trainer.train(dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]: output = model(**micro_batch)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]: sharded_logits = self.model(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default7]:[rank7]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default7]:[rank7]: pipeline_state.run_communication()
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default7]:[rank7]: recv_activation_tensor = recv_activation()
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default7]:[rank7]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default7]:[rank7]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default7]:[rank7]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default7]:[rank7]: dist.recv(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default7]:[rank7]: return func(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default7]:[rank7]: pg.recv([tensor], group_src_rank, tag).wait()
[default7]:[rank7]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default7]:[rank7]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default7]:[rank7]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7ff4dcdd9897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:[rank7]: frame #1: <unknown function> + 0x5b3a23e (0x7ff5168f623e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7ff5168f0c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7ff5168f0f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7ff5168f1fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7ff5168a6371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7ff4de0b3189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7ff4de0ba610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7ff4de0d9978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #12: <unknown function> + 0x5adc309 (0x7ff516898309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #13: <unknown function> + 0x5ae6f10 (0x7ff5168a2f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #14: <unknown function> + 0x5ae6fa5 (0x7ff5168a2fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #15: <unknown function> + 0x5124446 (0x7ff515ee0446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #16: <unknown function> + 0x1acf4b8 (0x7ff51288b4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #17: <unknown function> + 0x5aee004 (0x7ff5168aa004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #18: <unknown function> + 0x5af36b5 (0x7ff5168af6b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #19: <unknown function> + 0xd2631e (0x7ff52949931e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #20: <unknown function> + 0x47def4 (0x7ff528bf0ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #21: <unknown function> + 0x1445a6 (0x558e2e9a75a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #22: _PyObject_MakeTpCall + 0x26b (0x558e2e9a0a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #23: <unknown function> + 0x150866 (0x558e2e9b3866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x558e2e99c142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #25: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #26: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #28: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #30: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #32: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #34: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x558e2e99ff50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #37: _PyObject_Call_Prepend + 0x69 (0x558e2e9b1c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #38: <unknown function> + 0x211239 (0x558e2ea74239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #39: _PyObject_MakeTpCall + 0x26b (0x558e2e9a0a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x558e2e99c3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #41: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x558e2e997c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #43: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #45: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #46: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #48: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #49: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #51: _PyFunction_Vectorcall + 0x6c (0x558e2e9a7a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x558e2e9a0007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #53: _PyObject_Call_Prepend + 0x69 (0x558e2e9b1c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #54: <unknown function> + 0x211239 (0x558e2ea74239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #55: PyObject_Call + 0x207 (0x558e2e9b4067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #57: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x558e2e9988fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #59: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #60: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x558e2e99a2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #62: <unknown function> + 0x150582 (0x558e2e9b3582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #63: PyObject_Call + 0xbc (0x558e2e9b3f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]: trainer.train(dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]: output = model(**micro_batch)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]: sharded_logits = self.model(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]: Traceback (most recent call last):
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank5]: trainer.train(dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank5]: output = model(**micro_batch)
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]: pipeline_state.run_communication()
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank5]: sharded_logits = self.model(
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]: recv_activation_tensor = recv_activation()
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default6]:[rank6]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default5]:[rank5]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]: dist.recv(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default6]:[rank6]: return func(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default6]:[rank6]: pg.recv([tensor], group_src_rank, tag).wait()
[default5]:[rank5]: pipeline_state.run_communication()
[default6]:[rank6]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default5]:[rank5]: recv_activation_tensor = recv_activation()
[default6]:[rank6]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fa95637d897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default6]:[rank6]: frame #1: <unknown function> + 0x5b3a23e (0x7fa98fe9a23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default6]:[rank6]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fa98fe94c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fa98fe94f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fa98fe95fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default6]:[rank6]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default6]:[rank6]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fa98fe4a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default6]:[rank6]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fa957657189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fa95765e610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fa95767d978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #12: <unknown function> + 0x5adc309 (0x7fa98fe3c309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #13: <unknown function> + 0x5ae6f10 (0x7fa98fe46f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: dist.recv(
[default6]:[rank6]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fa98fe46fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default6]:[rank6]: frame #15: <unknown function> + 0x5124446 (0x7fa98f484446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #16: <unknown function> + 0x1acf4b8 (0x7fa98be2f4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #17: <unknown function> + 0x5aee004 (0x7fa98fe4e004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #18: <unknown function> + 0x5af36b5 (0x7fa98fe536b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #19: <unknown function> + 0xd2631e (0x7fa9a2a3d31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #20: <unknown function> + 0x47def4 (0x7fa9a2194ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default5]:[rank5]: return func(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default5]:[rank5]: pg.recv([tensor], group_src_rank, tag).wait()
[default5]:[rank5]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default6]:[rank6]: frame #21: <unknown function> + 0x1445a6 (0x55bd94df15a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default5]:[rank5]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f5034b31897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:[rank6]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55bd94deaa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #1: <unknown function> + 0x5b3a23e (0x7f506e64e23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #23: <unknown function> + 0x150866 (0x55bd94dfd866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7f506e648c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f506e648f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55bd94de6142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #26: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f506e649fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #30: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f506e5fe371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f5035e0b189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f5035e12610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7f5035e31978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #12: <unknown function> + 0x5adc309 (0x7f506e5f0309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #13: <unknown function> + 0x5ae6f10 (0x7f506e5faf10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #32: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #14: <unknown function> + 0x5ae6fa5 (0x7f506e5fafa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #15: <unknown function> + 0x5124446 (0x7f506dc38446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #34: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55bd94de9f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55bd94dfbc39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #38: <unknown function> + 0x211239 (0x55bd94ebe239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55bd94deaa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #16: <unknown function> + 0x1acf4b8 (0x7f506a5e34b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55bd94de63e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55bd94de1c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #45: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #46: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #48: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #49: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55bd94df1a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55bd94dea007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55bd94dfbc39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #54: <unknown function> + 0x211239 (0x55bd94ebe239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #55: PyObject_Call + 0x207 (0x55bd94dfe067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #57: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55bd94de28fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #17: <unknown function> + 0x5aee004 (0x7f506e602004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #59: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #18: <unknown function> + 0x5af36b5 (0x7f506e6076b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #60: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #19: <unknown function> + 0xd2631e (0x7f50811f131e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55bd94de42b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #20: <unknown function> + 0x47def4 (0x7f5080948ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #62: <unknown function> + 0x150582 (0x55bd94dfd582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #21: <unknown function> + 0x1445a6 (0x55f9b078e5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55f9b0787a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #63: PyObject_Call + 0xbc (0x55bd94dfdf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #23: <unknown function> + 0x150866 (0x55f9b079a866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default5]:[rank5]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55f9b0783142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #26: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #30: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #32: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #34: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55f9b0786f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55f9b0798c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #38: <unknown function> + 0x211239 (0x55f9b085b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55f9b0787a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55f9b07833e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55f9b077ec5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #45: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #46: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #48: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #49: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55f9b078ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55f9b0787007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55f9b0798c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #54: <unknown function> + 0x211239 (0x55f9b085b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #55: PyObject_Call + 0x207 (0x55f9b079b067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #57: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55f9b077f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #59: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #60: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55f9b07812b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #62: <unknown function> + 0x150582 (0x55f9b079a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #63: PyObject_Call + 0xbc (0x55f9b079af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: trainer.train(dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: sharded_logits = self.model(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]: pipeline_state.run_communication()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default4]:[rank4]: recv_activation_tensor = recv_activation()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default4]:[rank4]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default4]:[rank4]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default4]:[rank4]: dist.recv(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default4]:[rank4]: return func(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default4]:[rank4]: pg.recv([tensor], group_src_rank, tag).wait()
[default4]:[rank4]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default4]:[rank4]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default4]:[rank4]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fd7ed516897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:[rank4]: frame #1: <unknown function> + 0x5b3a23e (0x7fd82703323e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fd82702dc87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fd82702df82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fd82702efd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fd826fe3371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fd7ee7f0189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fd7ee7f7610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fd7ee816978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #12: <unknown function> + 0x5adc309 (0x7fd826fd5309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #13: <unknown function> + 0x5ae6f10 (0x7fd826fdff10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fd826fdffa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #15: <unknown function> + 0x5124446 (0x7fd82661d446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #16: <unknown function> + 0x1acf4b8 (0x7fd822fc84b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #17: <unknown function> + 0x5aee004 (0x7fd826fe7004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #18: <unknown function> + 0x5af36b5 (0x7fd826fec6b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #19: <unknown function> + 0xd2631e (0x7fd839bd631e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #20: <unknown function> + 0x47def4 (0x7fd83932def4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #21: <unknown function> + 0x1445a6 (0x56122d74e5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #22: _PyObject_MakeTpCall + 0x26b (0x56122d747a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #23: <unknown function> + 0x150866 (0x56122d75a866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x56122d743142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #25: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #26: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #28: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #30: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #32: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #34: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x56122d746f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #37: _PyObject_Call_Prepend + 0x69 (0x56122d758c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #38: <unknown function> + 0x211239 (0x56122d81b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #39: _PyObject_MakeTpCall + 0x26b (0x56122d747a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x56122d7433e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #41: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x56122d73ec5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #43: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #45: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #46: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #48: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #49: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #51: _PyFunction_Vectorcall + 0x6c (0x56122d74ea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x56122d747007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #53: _PyObject_Call_Prepend + 0x69 (0x56122d758c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #54: <unknown function> + 0x211239 (0x56122d81b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #55: PyObject_Call + 0x207 (0x56122d75b067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #57: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x56122d73f8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #59: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #60: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x56122d7412b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #62: <unknown function> + 0x150582 (0x56122d75a582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #63: PyObject_Call + 0xbc (0x56122d75af1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: . This may indicate a possible application crash on rank 0 or a network set up issue.
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218723 closing signal SIGTERM
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218724 closing signal SIGTERM
W0703 21:10:20.045000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218725 closing signal SIGTERM
W0703 21:10:20.046000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 218726 closing signal SIGTERM
E0703 21:10:21.164000 140415295817536 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 218719) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-03_21:10:20
host : ip-26-0-174-36.ec2.internal
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 218720)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-03_21:10:20
host : ip-26-0-174-36.ec2.internal
rank : 2 (local_rank: 2)
exitcode : 1 (pid: 218721)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-03_21:10:20
host : ip-26-0-174-36.ec2.internal
rank : 3 (local_rank: 3)
exitcode : 1 (pid: 218722)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-03_21:10:20
host : ip-26-0-174-36.ec2.internal
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 218719)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-174-36: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|