File size: 90,903 Bytes
ff1dcad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
========================
START TIME: Wed Jul 3 23:09:08 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757]
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] *****************************************
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config:
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: run='%date_%jobid',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: seed=42,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: step=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: consumed_train_samples=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: benchmark_csv_path=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: ignore_sanity_checks=True),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: parallelism=ParallelismArgs(dp=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pp=4,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f8f1eeb0880>,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tp_linear_async_communication=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: expert_parallel_size=1),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: eos_token_id=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_act='silu',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_size=2048,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: initializer_range=0.02,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: intermediate_size=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: is_llama_config=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: max_position_embeddings=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_attention_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_hidden_layers=24,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_key_value_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pad_token_id=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pretraining_tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rms_norm_eps=1e-05,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_scaling=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_theta=10000.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tie_word_embeddings=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: use_cache=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: vocab_size=50257),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dtype=torch.bfloat16,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer_revision=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokenizer_max_length=None),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoint_interval=100000,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: save_initial_state=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: resume_checkpoint_path=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: log_level_replica='info',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: iteration_step_info_interval=1),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: train_steps=20,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: micro_batch_size=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: batch_accumulation_per_replica=512,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: val_check_interval=-1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: limit_val_batches=0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: limit_test_batches=0),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: adam_beta1=0.9,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: adam_beta2=0.95,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: torch_adam_is_fused=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: name='adamW'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: zero_stage=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: weight_decay=0.01,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: clip_grad=1.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_warmup_steps=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_warmup_style='linear',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_style='linear',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_steps=19,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lr_decay_starting_step=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: min_decay_lr=1e-05)),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: start_training_step=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hf_dataset_splits='train',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hf_dataset_config_name=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: dataset_overwrite_cache=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: text_column_name='text'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: seed=42,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_loading_workers=0))],
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-1_pp-4_mbz-1')),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: lighteval=None)
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Model Config:
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: eos_token_id=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_act='silu',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: hidden_size=2048,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: initializer_range=0.02,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: intermediate_size=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: is_llama_config=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: max_position_embeddings=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_attention_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_hidden_layers=24,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: num_key_value_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pad_token_id=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: pretraining_tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rms_norm_eps=1e-05,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_scaling=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: rope_theta=10000.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: tie_word_embeddings=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: use_cache=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: vocab_size=50257)
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Building model..
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Setting PP block ranks...
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: Local number of parameters: 294M (560.05MiB)
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Total number of parameters: 1.21G (2312.82MiB)
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Local number of parameters: 397M (756.37MiB)
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: Local number of parameters: 252M (480.05MiB)
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 486.06MiB. Peak allocated: 488.09MiB Peak reserved: 502.00MiB
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: Local number of parameters: 271M (516.35MiB)
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 520.36MiB. Peak allocated: 522.39MiB Peak reserved: 534.00MiB
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default1]:07/03/2024 23:09:51 [INFO|DP=1|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 567.07MiB. Peak allocated: 569.10MiB Peak reserved: 594.00MiB
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 763.38MiB. Peak allocated: 765.41MiB Peak reserved: 792.00MiB
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Parametrizing model parameters using StandardParametrizator
[default5]:07/03/2024 23:09:51 [INFO|DP=1|PP=2|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/03/2024 23:09:51 [INFO|DP=1|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default7]:07/03/2024 23:09:51 [INFO|DP=1|PP=3|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 0 has 198M out of 397M (50.00%) params' optimizer states
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 1 has 198M out of 397M (50.00%) params' optimizer states
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Using `datasets` library
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 23:09:55 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Start training] datetime: 2024-07-03 23:09:57.268378 | mbs: 1 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 3032.50MiB. Peak allocated 3032.50MiB. Peak reserved: 3064.00MiB
[default1]:07/03/2024 23:09:57 [WARNING|DP=1|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 23:09:57 [WARNING|DP=0|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 23:09:57 [WARNING|DP=1|PP=2|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 23:09:57 [WARNING|DP=0|PP=2|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 23:09:57 [WARNING|DP=0|PP=3|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 23:09:57 [WARNING|DP=1|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 23:09:57 [WARNING|DP=1|PP=3|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at ../aten/src/ATen/cuda/CublasHandlePool.cpp:135.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default0]:07/03/2024 23:10:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 3100.03MiB. Peak allocated 11376.44MiB. Peak reserved: 11574.00MiB
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default0]:07/03/2024 23:10:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:10:40 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 41.9K | tokens_per_sec: 100K | tokens_per_sec_per_gpu: 12.5K | global_batch_size: 1.02K | lm_loss: 11.1 | lr: 0.0001 | model_tflops_per_gpu: 114 | hardware_tflops_per_gpu: 114 | grad_norm: 25.1 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:11:05 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 25.3K | tokens_per_sec: 166K | tokens_per_sec_per_gpu: 20.7K | global_batch_size: 1.02K | lm_loss: 11.1 | lr: 9.53e-05 | model_tflops_per_gpu: 188 | hardware_tflops_per_gpu: 188 | grad_norm: 25.2 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default0]:STAGE:2024-07-03 23:11:30 243244:243244 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default6]:07/03/2024 23:11:30 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 25.2K | tokens_per_sec: 167K | tokens_per_sec_per_gpu: 20.8K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.05e-05 | model_tflops_per_gpu: 189 | hardware_tflops_per_gpu: 189 | grad_norm: 217 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:11:58 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 28.2K | tokens_per_sec: 149K | tokens_per_sec_per_gpu: 18.6K | global_batch_size: 1.02K | lm_loss: 13.8 | lr: 8.58e-05 | model_tflops_per_gpu: 169 | hardware_tflops_per_gpu: 169 | grad_norm: 22.5 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:12:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:12:27 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 28.3K | tokens_per_sec: 148K | tokens_per_sec_per_gpu: 18.5K | global_batch_size: 1.02K | lm_loss: 9.98 | lr: 8.11e-05 | model_tflops_per_gpu: 168 | hardware_tflops_per_gpu: 168 | grad_norm: 16.5
[default6]:07/03/2024 23:12:55 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 28.5K | tokens_per_sec: 147K | tokens_per_sec_per_gpu: 18.4K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 167 | hardware_tflops_per_gpu: 167 | grad_norm: 93.9
[default0]:STAGE:2024-07-03 23:14:23 243244:243244 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 23:14:30 243244:243244 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]: trainer.train(dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]: output = model(**micro_batch)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]: sharded_logits = self.model(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]: pipeline_state.run_communication()
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]: recv_activation_tensor = recv_activation()
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default6]:[rank6]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default6]:[rank6]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default6]:[rank6]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: trainer.train(dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]: trainer.train(dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: sharded_logits = self.model(
[default2]:[rank2]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: sharded_logits = self.model(
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]: pipeline_state.run_communication()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default4]:[rank4]: recv_activation_tensor = recv_activation()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default2]:[rank2]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default4]:[rank4]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default2]:[rank2]: pipeline_state.run_communication()
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default2]:[rank2]: recv_activation_tensor = recv_activation()
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default2]:[rank2]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default2]:[rank2]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default2]:[rank2]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default2]:[rank2]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27657, last enqueued NCCL work: 27657, last completed NCCL work: 27656.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fc01d514c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fc01d519a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc01d51adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:terminate called after throwing an instance of 'c10::DistBackendError'
[default6]: what(): [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fc01d514c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fc01d519a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc01d51adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: <unknown function> + 0xe32119 (0x7fc01d19e119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #3: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #4: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 2] Timeout at NCCL work: 55305, last enqueued NCCL work: 55305, last completed NCCL work: 55304.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:577] [Rank 2] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:583] [Rank 2] To avoid data inconsistency, we are taking the entire process down.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 2] Process group watchdog thread terminated with exception: [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f097a70ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f097a70fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f097a710dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default4]:frame #5: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #6: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default4]:terminate called after throwing an instance of 'c10::DistBackendError'
[default4]: what(): [PG 4 Rank 2] Process group watchdog thread terminated with exception: [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f097a70ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f097a70fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f097a710dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default4]:frame #5: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #6: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default4]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: <unknown function> + 0xe32119 (0x7f097a394119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 1] Timeout at NCCL work: 55305, last enqueued NCCL work: 55305, last completed NCCL work: 55304.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:577] [Rank 1] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default4]:frame #3: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #4: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:583] [Rank 1] To avoid data inconsistency, we are taking the entire process down.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default2]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fec3fe8ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fec3fe8fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fec3fe90dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #4: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #5: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #6: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
[default2]:terminate called after throwing an instance of 'c10::DistBackendError'
[default2]: what(): [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default2]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fec3fe8ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fec3fe8fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fec3fe90dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #4: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #5: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #6: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
[default2]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: <unknown function> + 0xe32119 (0x7fec3fb14119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #3: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #4: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243244 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243245 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243247 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243249 closing signal SIGTERM
W0703 23:23:02.744000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243251 closing signal SIGTERM
E0703 23:23:06.831000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 2 (pid: 243246) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-03_23:23:02
host : ip-26-0-174-36.ec2.internal
rank : 4 (local_rank: 4)
exitcode : -6 (pid: 243248)
error_file: <N/A>
traceback : Signal 6 (SIGABRT) received by PID 243248
[2]:
time : 2024-07-03_23:23:02
host : ip-26-0-174-36.ec2.internal
rank : 6 (local_rank: 6)
exitcode : -6 (pid: 243250)
error_file: <N/A>
traceback : Signal 6 (SIGABRT) received by PID 243250
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-03_23:23:02
host : ip-26-0-174-36.ec2.internal
rank : 2 (local_rank: 2)
exitcode : -6 (pid: 243246)
error_file: <N/A>
traceback : Signal 6 (SIGABRT) received by PID 243246
============================================================
srun: error: ip-26-0-174-36: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 0%| | 0.00/2.93G [00:00<?, ?B/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 1%| | 16.0M/2.93G [00:00<02:12, 21.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 1%| | 32.0M/2.93G [00:01<01:26, 33.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 2%|β | 48.0M/2.93G [00:01<01:06, 43.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 2%|β | 64.0M/2.93G [00:01<01:05, 43.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 3%|β | 80.0M/2.93G [00:01<00:56, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 3%|β | 96.0M/2.93G [00:02<00:53, 52.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 4%|β | 112M/2.93G [00:02<00:51, 54.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 4%|β | 128M/2.93G [00:02<00:47, 59.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 5%|β | 144M/2.93G [00:02<00:45, 61.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 5%|β | 160M/2.93G [00:03<00:43, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 6%|β | 176M/2.93G [00:03<00:49, 55.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 7%|β | 192M/2.93G [00:03<00:46, 58.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 7%|β | 208M/2.93G [00:04<00:49, 54.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 8%|β | 224M/2.93G [00:04<00:42, 64.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 8%|β | 240M/2.93G [00:04<00:45, 59.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 9%|β | 256M/2.93G [00:04<00:48, 55.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 9%|β | 272M/2.93G [00:05<00:46, 57.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 10%|β | 288M/2.93G [00:05<00:44, 59.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 10%|β | 304M/2.93G [00:05<00:44, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 11%|β | 320M/2.93G [00:06<01:06, 39.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 11%|ββ | 336M/2.93G [00:06<00:56, 45.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 12%|ββ | 352M/2.93G [00:06<00:50, 51.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 13%|ββ | 368M/2.93G [00:07<00:46, 55.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 13%|ββ | 384M/2.93G [00:07<00:42, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 14%|ββ | 400M/2.93G [00:07<00:40, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 14%|ββ | 416M/2.93G [00:07<00:39, 64.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 15%|ββ | 432M/2.93G [00:08<00:46, 54.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 15%|ββ | 448M/2.93G [00:08<00:44, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 16%|ββ | 464M/2.93G [00:08<00:41, 58.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 16%|ββ | 480M/2.93G [00:09<00:49, 49.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 17%|ββ | 496M/2.93G [00:09<00:43, 55.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 17%|ββ | 512M/2.93G [00:10<01:11, 33.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 18%|ββ | 528M/2.93G [00:10<01:00, 39.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 19%|ββ | 544M/2.93G [00:10<00:54, 43.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 19%|ββ | 560M/2.93G [00:10<00:49, 47.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 20%|ββ | 576M/2.93G [00:11<00:45, 52.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 20%|ββ | 592M/2.93G [00:11<00:48, 48.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 21%|ββ | 608M/2.93G [00:11<00:49, 46.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 21%|βββ | 624M/2.93G [00:12<00:45, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 22%|βββ | 640M/2.93G [00:12<00:41, 55.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 22%|βββ | 656M/2.93G [00:12<00:42, 53.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 23%|βββ | 672M/2.93G [00:13<00:44, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 24%|βββ | 688M/2.93G [00:13<00:39, 57.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 24%|βββ | 704M/2.93G [00:13<00:37, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 25%|βββ | 720M/2.93G [00:13<00:36, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 25%|βββ | 736M/2.93G [00:14<00:34, 62.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 26%|βββ | 752M/2.93G [00:14<00:33, 64.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 26%|βββ | 768M/2.93G [00:14<00:34, 63.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 27%|βββ | 784M/2.93G [00:14<00:34, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 27%|βββ | 800M/2.93G [00:15<00:38, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 28%|βββ | 816M/2.93G [00:15<00:47, 44.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 28%|βββ | 832M/2.93G [00:15<00:42, 49.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 29%|βββ | 848M/2.93G [00:16<00:39, 52.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 30%|βββ | 864M/2.93G [00:16<00:36, 56.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 30%|βββ | 880M/2.93G [00:16<00:33, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 31%|βββ | 896M/2.93G [00:16<00:30, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 31%|βββ | 912M/2.93G [00:17<00:29, 67.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 32%|ββββ | 928M/2.93G [00:17<00:26, 76.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 32%|ββββ | 944M/2.93G [00:17<00:25, 77.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 33%|ββββ | 960M/2.93G [00:17<00:25, 77.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 33%|ββββ | 976M/2.93G [00:17<00:28, 69.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 34%|ββββ | 992M/2.93G [00:18<00:36, 53.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 34%|ββββ | 1.01G/2.93G [00:18<00:33, 56.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 35%|ββββ | 1.02G/2.93G [00:18<00:33, 57.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 36%|ββββ | 1.04G/2.93G [00:19<00:30, 62.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 36%|ββββ | 1.06G/2.93G [00:19<00:29, 64.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 37%|ββββ | 1.07G/2.93G [00:19<00:31, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 37%|ββββ | 1.09G/2.93G [00:19<00:29, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 38%|ββββ | 1.10G/2.93G [00:20<00:28, 63.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 38%|ββββ | 1.12G/2.93G [00:20<00:27, 65.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 39%|ββββ | 1.14G/2.93G [00:20<00:33, 54.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 39%|ββββ | 1.15G/2.93G [00:21<00:31, 56.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 40%|ββββ | 1.17G/2.93G [00:21<00:32, 54.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 40%|ββββ | 1.18G/2.93G [00:21<00:30, 57.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 41%|ββββ | 1.20G/2.93G [00:21<00:29, 59.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 42%|βββββ | 1.22G/2.93G [00:22<00:28, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 42%|βββββ | 1.23G/2.93G [00:22<00:27, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 43%|βββββ | 1.25G/2.93G [00:22<00:27, 62.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 43%|βββββ | 1.26G/2.93G [00:22<00:26, 62.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 44%|βββββ | 1.28G/2.93G [00:23<00:25, 65.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 44%|βββββ | 1.30G/2.93G [00:23<00:24, 67.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 45%|βββββ | 1.31G/2.93G [00:23<00:26, 61.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 45%|βββββ | 1.33G/2.93G [00:23<00:23, 68.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 46%|βββββ | 1.34G/2.93G [00:24<00:27, 58.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 46%|βββββ | 1.36G/2.93G [00:24<00:25, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 47%|βββββ | 1.38G/2.93G [00:24<00:29, 52.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 48%|βββββ | 1.39G/2.93G [00:25<00:27, 55.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 48%|βββββ | 1.41G/2.93G [00:25<00:25, 60.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 49%|βββββ | 1.42G/2.93G [00:25<00:24, 62.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 49%|βββββ | 1.44G/2.93G [00:25<00:22, 66.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 50%|βββββ | 1.46G/2.93G [00:25<00:24, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 50%|βββββ | 1.47G/2.93G [00:26<00:23, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 51%|βββββ | 1.49G/2.93G [00:26<00:23, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 51%|ββββββ | 1.50G/2.93G [00:26<00:23, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 52%|ββββββ | 1.52G/2.93G [00:27<00:23, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 52%|ββββββ | 1.54G/2.93G [00:27<00:25, 55.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 53%|ββββββ | 1.55G/2.93G [00:27<00:23, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 54%|ββββββ | 1.57G/2.93G [00:27<00:21, 63.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 54%|ββββββ | 1.58G/2.93G [00:28<00:21, 62.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 55%|ββββββ | 1.60G/2.93G [00:28<00:21, 61.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 55%|ββββββ | 1.62G/2.93G [00:28<00:22, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 56%|ββββββ | 1.63G/2.93G [00:28<00:21, 59.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 56%|ββββββ | 1.65G/2.93G [00:29<00:21, 60.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 57%|ββββββ | 1.66G/2.93G [00:29<00:19, 64.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 57%|ββββββ | 1.68G/2.93G [00:29<00:18, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 58%|ββββββ | 1.70G/2.93G [00:29<00:18, 65.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 58%|ββββββ | 1.71G/2.93G [00:30<00:19, 63.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 59%|ββββββ | 1.73G/2.93G [00:30<00:18, 65.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 60%|ββββββ | 1.74G/2.93G [00:30<00:17, 67.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 60%|ββββββ | 1.76G/2.93G [00:30<00:16, 71.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 61%|ββββββ | 1.78G/2.93G [00:31<00:16, 67.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 61%|ββββββ | 1.79G/2.93G [00:31<00:17, 65.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 62%|βββββββ | 1.81G/2.93G [00:31<00:16, 66.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 62%|βββββββ | 1.82G/2.93G [00:31<00:15, 70.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 63%|βββββββ | 1.84G/2.93G [00:31<00:15, 69.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 63%|βββββββ | 1.86G/2.93G [00:32<00:16, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 64%|βββββββ | 1.87G/2.93G [00:32<00:16, 62.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 64%|βββββββ | 1.89G/2.93G [00:32<00:15, 65.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 65%|βββββββ | 1.90G/2.93G [00:32<00:15, 66.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 66%|βββββββ | 1.92G/2.93G [00:33<00:15, 65.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 66%|βββββββ | 1.94G/2.93G [00:33<00:15, 62.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 67%|βββββββ | 1.95G/2.93G [00:33<00:15, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 67%|βββββββ | 1.97G/2.93G [00:33<00:15, 63.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 68%|βββββββ | 1.98G/2.93G [00:34<00:14, 66.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 68%|βββββββ | 2.00G/2.93G [00:34<00:16, 57.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 69%|βββββββ | 2.02G/2.93G [00:34<00:16, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 69%|βββββββ | 2.03G/2.93G [00:35<00:15, 58.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 70%|βββββββ | 2.05G/2.93G [00:35<00:14, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 71%|βββββββ | 2.06G/2.93G [00:35<00:13, 63.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 71%|βββββββ | 2.08G/2.93G [00:35<00:13, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 72%|ββββββββ | 2.10G/2.93G [00:36<00:13, 63.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 72%|ββββββββ | 2.11G/2.93G [00:36<00:13, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 73%|ββββββββ | 2.13G/2.93G [00:36<00:14, 56.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 73%|ββββββββ | 2.14G/2.93G [00:37<00:14, 54.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 74%|ββββββββ | 2.16G/2.93G [00:37<00:12, 60.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 74%|ββββββββ | 2.18G/2.93G [00:37<00:11, 63.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 75%|ββββββββ | 2.19G/2.93G [00:37<00:11, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 75%|ββββββββ | 2.21G/2.93G [00:37<00:11, 63.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 76%|ββββββββ | 2.22G/2.93G [00:38<00:10, 68.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 77%|ββββββββ | 2.24G/2.93G [00:38<00:10, 67.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 77%|ββββββββ | 2.26G/2.93G [00:38<00:09, 71.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 78%|ββββββββ | 2.27G/2.93G [00:38<00:09, 67.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 78%|ββββββββ | 2.29G/2.93G [00:39<00:09, 65.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 79%|ββββββββ | 2.30G/2.93G [00:39<00:10, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 79%|ββββββββ | 2.32G/2.93G [00:39<00:09, 64.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 80%|ββββββββ | 2.34G/2.93G [00:39<00:08, 68.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 80%|ββββββββ | 2.35G/2.93G [00:40<00:09, 63.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 81%|ββββββββ | 2.37G/2.93G [00:40<00:09, 56.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 81%|βββββββββ | 2.38G/2.93G [00:40<00:10, 51.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 82%|βββββββββ | 2.40G/2.93G [00:41<00:09, 55.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 83%|βββββββββ | 2.42G/2.93G [00:41<00:09, 56.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 83%|βββββββββ | 2.43G/2.93G [00:41<00:08, 57.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 84%|βββββββββ | 2.45G/2.93G [00:42<00:08, 54.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 84%|βββββββββ | 2.46G/2.93G [00:42<00:12, 36.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 85%|βββββββββ | 2.48G/2.93G [00:43<00:10, 42.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 85%|βββββββββ | 2.50G/2.93G [00:43<00:08, 48.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 86%|βββββββββ | 2.51G/2.93G [00:43<00:07, 54.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 86%|βββββββββ | 2.53G/2.93G [00:43<00:07, 52.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 87%|βββββββββ | 2.54G/2.93G [00:44<00:06, 55.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 87%|βββββββββ | 2.56G/2.93G [00:44<00:06, 59.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 88%|βββββββββ | 2.58G/2.93G [00:44<00:06, 57.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 89%|βββββββββ | 2.59G/2.93G [00:44<00:05, 60.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 89%|βββββββββ | 2.61G/2.93G [00:45<00:05, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 90%|βββββββββ | 2.62G/2.93G [00:45<00:04, 67.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 90%|βββββββββ | 2.64G/2.93G [00:45<00:04, 64.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 91%|βββββββββ | 2.66G/2.93G [00:45<00:03, 68.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 91%|ββββββββββ| 2.67G/2.93G [00:46<00:04, 60.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 92%|ββββββββββ| 2.69G/2.93G [00:46<00:03, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 92%|ββββββββββ| 2.70G/2.93G [00:46<00:03, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 93%|ββββββββββ| 2.72G/2.93G [00:46<00:03, 58.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 93%|ββββββββββ| 2.74G/2.93G [00:47<00:03, 62.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 94%|ββββββββββ| 2.75G/2.93G [00:47<00:02, 65.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 95%|ββββββββββ| 2.77G/2.93G [00:47<00:02, 59.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 95%|ββββββββββ| 2.78G/2.93G [00:47<00:02, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 96%|ββββββββββ| 2.80G/2.93G [00:48<00:02, 59.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 96%|ββββββββββ| 2.82G/2.93G [00:48<00:01, 56.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 97%|ββββββββββ| 2.83G/2.93G [00:48<00:01, 57.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 97%|ββββββββββ| 2.85G/2.93G [00:49<00:01, 56.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 98%|ββββββββββ| 2.86G/2.93G [00:49<00:01, 59.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 98%|ββββββββββ| 2.88G/2.93G [00:49<00:00, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 99%|ββββββββββ| 2.90G/2.93G [00:49<00:00, 61.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 99%|ββββββββββ| 2.91G/2.93G [00:49<00:00, 68.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 100%|ββββββββββ| 2.93G/2.93G [00:50<00:00, 58.3MB/s]
|