File size: 112,884 Bytes
dcd05a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
========================
START TIME: Wed Jul 3 22:50:00 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 22:50:03.560000 140718335600448 torch/distributed/run.py:757]
W0703 22:50:03.560000 140718335600448 torch/distributed/run.py:757] *****************************************
W0703 22:50:03.560000 140718335600448 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 22:50:03.560000 140718335600448 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 22:50:20 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config:
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: run='%date_%jobid',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: step=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: consumed_train_samples=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: benchmark_csv_path=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ignore_sanity_checks=True),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp=2,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp=4,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7ff94d650820>,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_linear_async_communication=False,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: expert_parallel_size=1),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50260),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dtype=torch.bfloat16,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_revision=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_max_length=None),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoint_interval=100000,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: save_initial_state=False,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: resume_checkpoint_path=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: log_level_replica='info',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: iteration_step_info_interval=1),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: train_steps=20,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: micro_batch_size=64,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: batch_accumulation_per_replica=16,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: val_check_interval=-1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_val_batches=0,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_test_batches=0),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta1=0.9,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta2=0.95,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: torch_adam_is_fused=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: name='adamW'),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: zero_stage=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: weight_decay=0.01,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: clip_grad=1.0,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_steps=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_style='linear',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_style='linear',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_steps=19,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_starting_step=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: min_decay_lr=1e-05)),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: start_training_step=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_splits='train',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_config_name=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_overwrite_cache=False,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: text_column_name='text'),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_loading_workers=0))],
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-4_pp-2_mbz-64')),
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lighteval=None)
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Model Config:
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50260)
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Building model..
[default0]:07/03/2024 22:50:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Setting PP block ranks...
[default5]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default5]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default5]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default6]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default6]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default2]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default2]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default2]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default4]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default4]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default4]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Total number of parameters: 1.21G (2313.42MiB)
[default0]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default0]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default0]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Parametrizing model parameters using StandardParametrizator
[default7]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default7]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default7]:07/03/2024 22:50:33 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default1]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default1]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default3]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default1]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default3]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default3]:07/03/2024 22:50:33 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:50:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 22:50:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 22:50:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 0 has 173M out of 173M (100.00%) params' optimizer states
[default0]:07/03/2024 22:50:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 22:50:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Using `datasets` library
[default0]:07/03/2024 22:50:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 22:50:36 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Start training] datetime: 2024-07-03 22:50:37.274303 | mbs: 64 | grad_accum: 16 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 22:50:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Memory usage: 1660.89MiB. Peak allocated 1660.89MiB. Peak reserved: 1668.00MiB
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 22:50:37 [WARNING|DP=0|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 22:50:37 [WARNING|DP=0|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 22:50:37 [WARNING|DP=0|PP=1|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 22:50:37 [WARNING|DP=0|PP=1|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 22:50:37 [WARNING|DP=0|PP=1|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 22:50:37 [WARNING|DP=0|PP=1|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 22:50:37 [WARNING|DP=0|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]: trainer.train(dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: output = model(**micro_batch)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]: sharded_logits = self.model(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default1]:[rank1]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 563, in forward
[default1]:[rank1]: key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 207.94 MiB is free. Including non-PyTorch memory, this process has 79.12 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 420.34 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]: trainer.train(dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]: output = model(**micro_batch)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank2]: sharded_logits = self.model(
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]: output = self.pp_block(**new_kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default2]:[rank2]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 563, in forward
[default2]:[rank2]: key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 207.94 MiB is free. Including non-PyTorch memory, this process has 79.12 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 420.34 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]: trainer.train(dataloader)
[default3]:[rank3]: Traceback (most recent call last):
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]: trainer.train(dataloader)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]: output = model(**micro_batch)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default3]:[rank3]: output = model(**micro_batch)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]: sharded_logits = self.model(
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank0]: sharded_logits = self.model(
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: output = self.pp_block(**new_kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 563, in forward
[default3]:[rank3]: key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU has a total capacity of 79.33 GiB of which 447.94 MiB is free. Including non-PyTorch memory, this process has 78.88 GiB memory in use. Of the allocated memory 67.25 GiB is allocated by PyTorch, and 420.34 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 563, in forward
[default0]:[rank0]: key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]: trainer.train(dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]: output = model(**micro_batch)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]: sharded_logits = self.model(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default7]:[rank7]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default7]:[rank7]: pipeline_state.run_communication()
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default7]:[rank7]: recv_activation_tensor = recv_activation()
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default7]:[rank7]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default7]:[rank7]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default7]:[rank7]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default7]:[rank7]: dist.recv(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default7]:[rank7]: return func(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default7]:[rank7]: pg.recv([tensor], group_src_rank, tag).wait()
[default7]:[rank7]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default7]:[rank7]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default7]:[rank7]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0177961897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default7]:[rank7]: frame #1: <unknown function> + 0x5b3a23e (0x7f01b147e23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7f01b1478c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f01b1478f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f01b1479fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f01b142e371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f01b142e371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f01b142e371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f01b142e371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f0178c3b189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f0178c42610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7f0178c61978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default7]:[rank7]: frame #12: <unknown function> + 0x5adc309 (0x7f01b1420309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #13: <unknown function> + 0x5ae6f10 (0x7f01b142af10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #14: <unknown function> + 0x5ae6fa5 (0x7f01b142afa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #15: <unknown function> + 0x5124446 (0x7f01b0a68446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #16: <unknown function> + 0x1acf4b8 (0x7f01ad4134b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #17: <unknown function> + 0x5aee004 (0x7f01b1432004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #18: <unknown function> + 0x5af36b5 (0x7f01b14376b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default7]:[rank7]: frame #19: <unknown function> + 0xd2631e (0x7f01c402131e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #20: <unknown function> + 0x47def4 (0x7f01c3778ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default7]:[rank7]: frame #21: <unknown function> + 0x1445a6 (0x55f8d285a5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55f8d2853a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #23: <unknown function> + 0x150866 (0x55f8d2866866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55f8d284f142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55f8d285aa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #26: PyObject_Call + 0xbc (0x55f8d2866f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55f8d284d2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55f8d285aa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #30: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #32: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #34: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55f8d2852f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55f8d2864c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #38: <unknown function> + 0x211239 (0x55f8d2927239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55f8d2853a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55f8d284f3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55f8d285aa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55f8d284ac5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55f8d285aa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #45: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #46: PyObject_Call + 0xbc (0x55f8d2866f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55f8d284d2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #48: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #49: PyObject_Call + 0xbc (0x55f8d2866f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55f8d284d2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55f8d285aa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55f8d2853007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55f8d2864c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #54: <unknown function> + 0x211239 (0x55f8d2927239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #55: PyObject_Call + 0x207 (0x55f8d2867067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55f8d284d2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #57: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55f8d284b8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #59: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #60: PyObject_Call + 0xbc (0x55f8d2866f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55f8d284d2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #62: <unknown function> + 0x150582 (0x55f8d2866582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: frame #63: PyObject_Call + 0xbc (0x55f8d2866f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default7]:[rank7]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]: trainer.train(dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]: output = model(**micro_batch)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]: sharded_logits = self.model(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]: pipeline_state.run_communication()
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]: recv_activation_tensor = recv_activation()
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default6]:[rank6]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default6]:[rank6]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default6]:[rank6]: dist.recv(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default6]:[rank6]: return func(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default6]:[rank6]: pg.recv([tensor], group_src_rank, tag).wait()
[default6]:[rank6]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default6]:[rank6]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default6]:[rank6]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fdd6ed2c897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:[rank6]: frame #1: <unknown function> + 0x5b3a23e (0x7fdda884923e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fdda8843c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fdda8843f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fdda8844fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fdda87f9371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fdda87f9371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fdda87f9371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fdda87f9371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fdd70006189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fdd7000d610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fdd7002c978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:[rank6]: frame #12: <unknown function> + 0x5adc309 (0x7fdda87eb309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #13: <unknown function> + 0x5ae6f10 (0x7fdda87f5f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fdda87f5fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #15: <unknown function> + 0x5124446 (0x7fdda7e33446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #16: <unknown function> + 0x1acf4b8 (0x7fdda47de4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #17: <unknown function> + 0x5aee004 (0x7fdda87fd004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #18: <unknown function> + 0x5af36b5 (0x7fdda88026b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default6]:[rank6]: frame #19: <unknown function> + 0xd2631e (0x7fddbb3ec31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #20: <unknown function> + 0x47def4 (0x7fddbab43ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default6]:[rank6]: frame #21: <unknown function> + 0x1445a6 (0x55e7bce075a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55e7bce00a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #23: <unknown function> + 0x150866 (0x55e7bce13866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55e7bcdfc142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55e7bce07a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #26: PyObject_Call + 0xbc (0x55e7bce13f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55e7bcdfa2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55e7bce07a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #30: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #32: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #34: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55e7bcdfff50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55e7bce11c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #38: <unknown function> + 0x211239 (0x55e7bced4239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55e7bce00a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55e7bcdfc3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55e7bce07a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55e7bcdf7c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55e7bce07a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #45: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #46: PyObject_Call + 0xbc (0x55e7bce13f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55e7bcdfa2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #48: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #49: PyObject_Call + 0xbc (0x55e7bce13f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55e7bcdfa2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55e7bce07a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55e7bce00007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55e7bce11c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #54: <unknown function> + 0x211239 (0x55e7bced4239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #55: PyObject_Call + 0x207 (0x55e7bce14067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55e7bcdfa2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #57: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55e7bcdf88fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #59: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #60: PyObject_Call + 0xbc (0x55e7bce13f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55e7bcdfa2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #62: <unknown function> + 0x150582 (0x55e7bce13582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: frame #63: PyObject_Call + 0xbc (0x55e7bce13f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default6]:[rank6]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: trainer.train(dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: sharded_logits = self.model(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]: pipeline_state.run_communication()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default4]:[rank4]: recv_activation_tensor = recv_activation()
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default4]:[rank4]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default4]:[rank4]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default4]:[rank4]: dist.recv(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default4]:[rank4]: return func(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default4]:[rank4]: pg.recv([tensor], group_src_rank, tag).wait()
[default4]:[rank4]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default4]:[rank4]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default4]:[rank4]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fce1520b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:[rank4]: frame #1: <unknown function> + 0x5b3a23e (0x7fce4ed2823e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7fce4ed22c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fce4ed22f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fce4ed23fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fce4ecd8371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fce4ecd8371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fce4ecd8371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fce4ecd8371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fce164e5189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fce164ec610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7fce1650b978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:[rank4]: frame #12: <unknown function> + 0x5adc309 (0x7fce4ecca309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #13: <unknown function> + 0x5ae6f10 (0x7fce4ecd4f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #14: <unknown function> + 0x5ae6fa5 (0x7fce4ecd4fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #15: <unknown function> + 0x5124446 (0x7fce4e312446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #16: <unknown function> + 0x1acf4b8 (0x7fce4acbd4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #17: <unknown function> + 0x5aee004 (0x7fce4ecdc004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #18: <unknown function> + 0x5af36b5 (0x7fce4ece16b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default4]:[rank4]: frame #19: <unknown function> + 0xd2631e (0x7fce618cb31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #20: <unknown function> + 0x47def4 (0x7fce61022ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default4]:[rank4]: frame #21: <unknown function> + 0x1445a6 (0x55bb3d3bc5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55bb3d3b5a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #23: <unknown function> + 0x150866 (0x55bb3d3c8866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55bb3d3b1142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55bb3d3bca2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #26: PyObject_Call + 0xbc (0x55bb3d3c8f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55bb3d3af2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55bb3d3bca2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #30: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #32: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #34: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55bb3d3b4f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55bb3d3c6c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #38: <unknown function> + 0x211239 (0x55bb3d489239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55bb3d3b5a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55bb3d3b13e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55bb3d3bca2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55bb3d3acc5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55bb3d3bca2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #45: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #46: PyObject_Call + 0xbc (0x55bb3d3c8f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55bb3d3af2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #48: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #49: PyObject_Call + 0xbc (0x55bb3d3c8f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55bb3d3af2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55bb3d3bca2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55bb3d3b5007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55bb3d3c6c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #54: <unknown function> + 0x211239 (0x55bb3d489239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #55: PyObject_Call + 0x207 (0x55bb3d3c9067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55bb3d3af2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #57: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55bb3d3ad8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #59: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #60: PyObject_Call + 0xbc (0x55bb3d3c8f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55bb3d3af2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #62: <unknown function> + 0x150582 (0x55bb3d3c8582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: frame #63: PyObject_Call + 0xbc (0x55bb3d3c8f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default4]:[rank4]: . This may indicate a possible application crash on rank 0 or a network set up issue.
[default5]:[rank5]: Traceback (most recent call last):
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank5]: trainer.train(dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank5]: output = model(**micro_batch)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank5]: sharded_logits = self.model(
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default5]:[rank5]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default5]:[rank5]: pipeline_state.run_communication()
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default5]:[rank5]: recv_activation_tensor = recv_activation()
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default5]:[rank5]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default5]:[rank5]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default5]:[rank5]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta
[default5]:[rank5]: dist.recv(
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default5]:[rank5]: return func(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
[default5]:[rank5]: pg.recv([tensor], group_src_rank, tag).wait()
[default5]:[rank5]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer
[default5]:[rank5]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
[default5]:[rank5]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f7acab9b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default5]:[rank5]: frame #1: <unknown function> + 0x5b3a23e (0x7f7b046b823e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7f7b046b2c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f7b046b2f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f7b046b3fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f7b04668371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f7b04668371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f7b04668371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f7b04668371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f7acbe75189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f7acbe7c610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7f7acbe9b978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default5]:[rank5]: frame #12: <unknown function> + 0x5adc309 (0x7f7b0465a309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #13: <unknown function> + 0x5ae6f10 (0x7f7b04664f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #14: <unknown function> + 0x5ae6fa5 (0x7f7b04664fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #15: <unknown function> + 0x5124446 (0x7f7b03ca2446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #16: <unknown function> + 0x1acf4b8 (0x7f7b0064d4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #17: <unknown function> + 0x5aee004 (0x7f7b0466c004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #18: <unknown function> + 0x5af36b5 (0x7f7b046716b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so)
[default5]:[rank5]: frame #19: <unknown function> + 0xd2631e (0x7f7b1725b31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default5]:[rank5]: frame #20: <unknown function> + 0x47def4 (0x7f7b169b2ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so)
[default5]:[rank5]: frame #21: <unknown function> + 0x1445a6 (0x55a205f185a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55a205f11a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #23: <unknown function> + 0x150866 (0x55a205f24866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55a205f0d142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55a205f18a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #26: PyObject_Call + 0xbc (0x55a205f24f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55a205f0b2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55a205f18a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #30: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #32: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #34: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55a205f10f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55a205f22c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #38: <unknown function> + 0x211239 (0x55a205fe5239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55a205f11a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55a205f0d3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55a205f18a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55a205f08c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55a205f18a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #45: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #46: PyObject_Call + 0xbc (0x55a205f24f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55a205f0b2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #48: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #49: PyObject_Call + 0xbc (0x55a205f24f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55a205f0b2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55a205f18a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55a205f11007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55a205f22c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #54: <unknown function> + 0x211239 (0x55a205fe5239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #55: PyObject_Call + 0x207 (0x55a205f25067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55a205f0b2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #57: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55a205f098fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #59: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #60: PyObject_Call + 0xbc (0x55a205f24f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55a205f0b2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #62: <unknown function> + 0x150582 (0x55a205f24582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: frame #63: PyObject_Call + 0xbc (0x55a205f24f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10)
[default5]:[rank5]: . This may indicate a possible application crash on rank 0 or a network set up issue.
W0703 22:50:48.933000 140718335600448 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1033517 closing signal SIGTERM
W0703 22:50:48.933000 140718335600448 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1033518 closing signal SIGTERM
W0703 22:50:48.934000 140718335600448 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1033519 closing signal SIGTERM
W0703 22:50:48.934000 140718335600448 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1033520 closing signal SIGTERM
E0703 22:50:50.044000 140718335600448 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1033513) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-03_22:50:48
host : ip-26-0-161-178.ec2.internal
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 1033514)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-03_22:50:48
host : ip-26-0-161-178.ec2.internal
rank : 2 (local_rank: 2)
exitcode : 1 (pid: 1033515)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-03_22:50:48
host : ip-26-0-161-178.ec2.internal
rank : 3 (local_rank: 3)
exitcode : 1 (pid: 1033516)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-03_22:50:48
host : ip-26-0-161-178.ec2.internal
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 1033513)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-161-178: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|