File size: 90,903 Bytes
ff1dcad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
========================
START TIME: Wed Jul  3 23:09:08 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] 
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] *****************************************
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 23:09:16.686000 139898740016960 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config:
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            run='%date_%jobid',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            seed=42,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            step=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            consumed_train_samples=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            benchmark_csv_path=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            ignore_sanity_checks=True),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        parallelism=ParallelismArgs(dp=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    pp=4,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f8f1eeb0880>,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    tp_linear_async_communication=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    expert_parallel_size=1),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 eos_token_id=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 hidden_act='silu',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 hidden_size=2048,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 initializer_range=0.02,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 intermediate_size=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 is_llama_config=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 max_position_embeddings=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_attention_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_hidden_layers=24,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 num_key_value_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 pad_token_id=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 pretraining_tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rms_norm_eps=1e-05,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rope_scaling=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 rope_theta=10000.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 tie_word_embeddings=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 use_cache=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                 vocab_size=50257),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        init_method=RandomInit(std=0.025),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        dtype=torch.bfloat16,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        make_vocab_size_divisible_by=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                        ddp_bucket_cap_mb=25),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                tokenizer_revision=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                tokenizer_max_length=None),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    checkpoint_interval=100000,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    save_initial_state=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    resume_checkpoint_path=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            log_level_replica='info',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                            iteration_step_info_interval=1),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          train_steps=20,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          micro_batch_size=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          batch_accumulation_per_replica=512,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          val_check_interval=-1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          limit_val_batches=0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                          limit_test_batches=0),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     adam_beta1=0.9,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     adam_beta2=0.95,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     torch_adam_is_fused=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                     name='adamW'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                zero_stage=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                weight_decay=0.01,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                clip_grad=1.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                accumulate_grad_in_fp32=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_warmup_steps=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_warmup_style='linear',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_style='linear',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_steps=19,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        lr_decay_starting_step=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                        min_decay_lr=1e-05)),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                      start_training_step=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 hf_dataset_splits='train',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 hf_dataset_config_name=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                                                 text_column_name='text'),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                    seed=42,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:                                                    num_loading_workers=0))],
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-1_pp-4_mbz-1')),
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:        lighteval=None)
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Model Config:
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             eos_token_id=2,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             hidden_act='silu',
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             hidden_size=2048,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             initializer_range=0.02,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             intermediate_size=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             is_llama_config=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             max_position_embeddings=4096,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_attention_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_hidden_layers=24,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             num_key_value_heads=32,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             pad_token_id=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             pretraining_tp=1,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rms_norm_eps=1e-05,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rope_scaling=None,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             rope_theta=10000.0,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             tie_word_embeddings=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             use_cache=True,
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:             vocab_size=50257)
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Building model..
[default0]:07/03/2024 23:09:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Setting PP block ranks...
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: Local number of parameters: 294M (560.05MiB)
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Total number of parameters: 1.21G (2312.82MiB)
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Local number of parameters: 397M (756.37MiB)
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: Local number of parameters: 252M (480.05MiB)
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 486.06MiB. Peak allocated: 488.09MiB Peak reserved: 502.00MiB
[default4]:07/03/2024 23:09:51 [INFO|DP=0|PP=2|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: Local number of parameters: 271M (516.35MiB)
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 520.36MiB. Peak allocated: 522.39MiB Peak reserved: 534.00MiB
[default6]:07/03/2024 23:09:51 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default1]:07/03/2024 23:09:51 [INFO|DP=1|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 567.07MiB. Peak allocated: 569.10MiB Peak reserved: 594.00MiB
[default2]:07/03/2024 23:09:51 [INFO|DP=0|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [After model building] Memory usage: 763.38MiB. Peak allocated: 765.41MiB Peak reserved: 792.00MiB
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Parametrizing model parameters using StandardParametrizator
[default5]:07/03/2024 23:09:51 [INFO|DP=1|PP=2|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default3]:07/03/2024 23:09:51 [INFO|DP=1|PP=1|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default7]:07/03/2024 23:09:51 [INFO|DP=1|PP=3|TP=0|ip-26-0-174-36]: No checkpoint path provided.
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 0 has 198M out of 397M (50.00%) params' optimizer states
[default0]:07/03/2024 23:09:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [ZeRO sharding] DP Rank 1 has 198M out of 397M (50.00%) params' optimizer states
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Using `datasets` library
[default0]:07/03/2024 23:09:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 23:09:55 [WARNING|DP=0|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Training Plan] There are 1 training stages 
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Stage Training Stage] start from step 1 
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: 
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: [Start training] datetime: 2024-07-03 23:09:57.268378 | mbs: 1 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 23:09:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 3032.50MiB. Peak allocated 3032.50MiB. Peak reserved: 3064.00MiB
[default1]:07/03/2024 23:09:57 [WARNING|DP=1|PP=0|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 23:09:57 [WARNING|DP=0|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 23:09:57 [WARNING|DP=1|PP=2|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 23:09:57 [WARNING|DP=0|PP=2|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 23:09:57 [WARNING|DP=0|PP=3|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 23:09:57 [WARNING|DP=1|PP=1|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 23:09:57 [WARNING|DP=1|PP=3|TP=0|ip-26-0-174-36]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at ../aten/src/ATen/cuda/CublasHandlePool.cpp:135.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default0]:07/03/2024 23:10:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 3100.03MiB. Peak allocated 11376.44MiB. Peak reserved: 11574.00MiB
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default0]:07/03/2024 23:10:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:10:40 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 41.9K | tokens_per_sec: 100K | tokens_per_sec_per_gpu: 12.5K | global_batch_size: 1.02K | lm_loss: 11.1 | lr: 0.0001 | model_tflops_per_gpu: 114 | hardware_tflops_per_gpu: 114 | grad_norm: 25.1 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:11:05 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 25.3K | tokens_per_sec: 166K | tokens_per_sec_per_gpu: 20.7K | global_batch_size: 1.02K | lm_loss: 11.1 | lr: 9.53e-05 | model_tflops_per_gpu: 188 | hardware_tflops_per_gpu: 188 | grad_norm: 25.2 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default0]:STAGE:2024-07-03 23:11:30 243244:243244 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default6]:07/03/2024 23:11:30 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 25.2K | tokens_per_sec: 167K | tokens_per_sec_per_gpu: 20.8K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.05e-05 | model_tflops_per_gpu: 189 | hardware_tflops_per_gpu: 189 | grad_norm: 217 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:11:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default0]:07/03/2024 23:11:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 6503.72MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:11:58 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 28.2K | tokens_per_sec: 149K | tokens_per_sec_per_gpu: 18.6K | global_batch_size: 1.02K | lm_loss: 13.8 | lr: 8.58e-05 | model_tflops_per_gpu: 169 | hardware_tflops_per_gpu: 169 | grad_norm: 22.5 | cuda_memory_allocated: 3.32G | cuda_max_memory_reserved: 6.37G | hd_total_memory_tb: 312G | hd_used_memory_tb: 65.8G | hd_free_memory_tb: 246G
[default0]:07/03/2024 23:12:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-174-36]:  Memory usage: 4612.80MiB. Peak allocated 12787.81MiB. Peak reserved: 13670.00MiB
[default6]:07/03/2024 23:12:27 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 28.3K | tokens_per_sec: 148K | tokens_per_sec_per_gpu: 18.5K | global_batch_size: 1.02K | lm_loss: 9.98 | lr: 8.11e-05 | model_tflops_per_gpu: 168 | hardware_tflops_per_gpu: 168 | grad_norm: 16.5
[default6]:07/03/2024 23:12:55 [INFO|DP=0|PP=3|TP=0|ip-26-0-174-36]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 28.5K | tokens_per_sec: 147K | tokens_per_sec_per_gpu: 18.4K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 167 | hardware_tflops_per_gpu: 167 | grad_norm: 93.9
[default0]:STAGE:2024-07-03 23:14:23 243244:243244 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 23:14:30 243244:243244 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]:     trainer.train(dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]:     outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]:     output = model(**micro_batch)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]:     sharded_logits = self.model(
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank6]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]:     return self._call_impl(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]:     return forward_call(*args, **kwargs)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default6]:[rank6]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default6]:[rank6]:     pipeline_state.run_communication()
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default6]:[rank6]:     recv_activation_tensor = recv_activation()
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default6]:[rank6]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default6]:[rank6]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default6]:[rank6]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default6]:[rank6]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default6]:[rank6]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]:     trainer.train(dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]:     outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]:     trainer.train(dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default4]:[rank4]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]:     output = model(**micro_batch)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
[default2]:[rank2]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]:     sharded_logits = self.model(
[default2]:[rank2]:     output = model(**micro_batch)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:     sharded_logits = self.model(
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default4]:[rank4]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]:     pipeline_state.run_communication()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default4]:[rank4]:     recv_activation_tensor = recv_activation()
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default4]:[rank4]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default2]:[rank2]:     new_kwargs[name] = recv_from_pipeline_state_buffer(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default4]:[rank4]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default4]:[rank4]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default2]:[rank2]:     pipeline_state.run_communication()
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
[default2]:[rank2]:     recv_activation_tensor = recv_activation()
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
[default2]:[rank2]:     return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
[default2]:[rank2]:     buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
[default2]:[rank2]:     meta = self._recv_meta(from_rank=from_rank, tag=tag)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
[default2]:[rank2]:     self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27657, last enqueued NCCL work: 27657, last completed NCCL work: 27656.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fc01d514c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fc01d519a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc01d51adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:terminate called after throwing an instance of 'c10::DistBackendError'
[default6]:  what():  [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27657, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600025 milliseconds before timing out.
[default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fc01d514c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fc01d519a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fc01d51adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #4: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #5: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #6: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default6]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc01c23b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default6]:frame #1: <unknown function> + 0xe32119 (0x7fc01d19e119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default6]:frame #2: <unknown function> + 0xd3e95 (0x7fc068fb3e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default6]:frame #3: <unknown function> + 0x8609 (0x7fc06dffa609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default6]:frame #4: clone + 0x43 (0x7fc06ddc5353 in /lib/x86_64-linux-gnu/libc.so.6)
[default6]:
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 2] Timeout at NCCL work: 55305, last enqueued NCCL work: 55305, last completed NCCL work: 55304.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:577] [Rank 2] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:583] [Rank 2] To avoid data inconsistency, we are taking the entire process down.
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 2] Process group watchdog thread terminated with exception: [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f097a70ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f097a70fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f097a710dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default4]:frame #5: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #6: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default4]:terminate called after throwing an instance of 'c10::DistBackendError'
[default4]:  what():  [PG 4 Rank 2] Process group watchdog thread terminated with exception: [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600032 milliseconds before timing out.
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f097a70ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f097a70fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f097a710dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default4]:frame #5: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #6: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default4]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0979431897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default4]:frame #1: <unknown function> + 0xe32119 (0x7f097a394119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default4]:frame #2: <unknown function> + 0xd3e95 (0x7f09c61a9e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 1] Timeout at NCCL work: 55305, last enqueued NCCL work: 55305, last completed NCCL work: 55304.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:577] [Rank 1] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
[default4]:frame #3: <unknown function> + 0x8609 (0x7f09cb1f0609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default4]:frame #4: clone + 0x43 (0x7f09cafbb353 in /lib/x86_64-linux-gnu/libc.so.6)
[default4]:
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:583] [Rank 1] To avoid data inconsistency, we are taking the entire process down.
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default2]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fec3fe8ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fec3fe8fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fec3fe90dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #4: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #5: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #6: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
[default2]:terminate called after throwing an instance of 'c10::DistBackendError'
[default2]:  what():  [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55305, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600091 milliseconds before timing out.
[default2]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fec3fe8ac62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fec3fe8fa80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fec3fe90dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #4: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #5: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #6: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
[default2]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
[default2]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fec3ebb1897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
[default2]:frame #1: <unknown function> + 0xe32119 (0x7fec3fb14119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
[default2]:frame #2: <unknown function> + 0xd3e95 (0x7fec8b929e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
[default2]:frame #3: <unknown function> + 0x8609 (0x7fec90970609 in /lib/x86_64-linux-gnu/libpthread.so.0)
[default2]:frame #4: clone + 0x43 (0x7fec9073b353 in /lib/x86_64-linux-gnu/libc.so.6)
[default2]:
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243244 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243245 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243247 closing signal SIGTERM
W0703 23:23:02.743000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243249 closing signal SIGTERM
W0703 23:23:02.744000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 243251 closing signal SIGTERM
E0703 23:23:06.831000 139898740016960 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 2 (pid: 243246) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
  time      : 2024-07-03_23:23:02
  host      : ip-26-0-174-36.ec2.internal
  rank      : 4 (local_rank: 4)
  exitcode  : -6 (pid: 243248)
  error_file: <N/A>
  traceback : Signal 6 (SIGABRT) received by PID 243248
[2]:
  time      : 2024-07-03_23:23:02
  host      : ip-26-0-174-36.ec2.internal
  rank      : 6 (local_rank: 6)
  exitcode  : -6 (pid: 243250)
  error_file: <N/A>
  traceback : Signal 6 (SIGABRT) received by PID 243250
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-03_23:23:02
  host      : ip-26-0-174-36.ec2.internal
  rank      : 2 (local_rank: 2)
  exitcode  : -6 (pid: 243246)
  error_file: <N/A>
  traceback : Signal 6 (SIGABRT) received by PID 243246
============================================================
srun: error: ip-26-0-174-36: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.

ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   0%|          | 0.00/2.93G [00:00<?, ?B/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   1%|          | 16.0M/2.93G [00:00<02:12, 21.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   1%|          | 32.0M/2.93G [00:01<01:26, 33.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   2%|▏         | 48.0M/2.93G [00:01<01:06, 43.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   2%|▏         | 64.0M/2.93G [00:01<01:05, 43.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   3%|β–Ž         | 80.0M/2.93G [00:01<00:56, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   3%|β–Ž         | 96.0M/2.93G [00:02<00:53, 52.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   4%|▍         | 112M/2.93G [00:02<00:51, 54.9MB/s] 
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   4%|▍         | 128M/2.93G [00:02<00:47, 59.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   5%|▍         | 144M/2.93G [00:02<00:45, 61.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   5%|β–Œ         | 160M/2.93G [00:03<00:43, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   6%|β–Œ         | 176M/2.93G [00:03<00:49, 55.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   7%|β–‹         | 192M/2.93G [00:03<00:46, 58.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   7%|β–‹         | 208M/2.93G [00:04<00:49, 54.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   8%|β–Š         | 224M/2.93G [00:04<00:42, 64.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   8%|β–Š         | 240M/2.93G [00:04<00:45, 59.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   9%|β–Š         | 256M/2.93G [00:04<00:48, 55.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:   9%|β–‰         | 272M/2.93G [00:05<00:46, 57.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  10%|β–‰         | 288M/2.93G [00:05<00:44, 59.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  10%|β–ˆ         | 304M/2.93G [00:05<00:44, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  11%|β–ˆ         | 320M/2.93G [00:06<01:06, 39.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  11%|β–ˆβ–        | 336M/2.93G [00:06<00:56, 45.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  12%|β–ˆβ–        | 352M/2.93G [00:06<00:50, 51.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  13%|β–ˆβ–Ž        | 368M/2.93G [00:07<00:46, 55.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  13%|β–ˆβ–Ž        | 384M/2.93G [00:07<00:42, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  14%|β–ˆβ–Ž        | 400M/2.93G [00:07<00:40, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  14%|β–ˆβ–        | 416M/2.93G [00:07<00:39, 64.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  15%|β–ˆβ–        | 432M/2.93G [00:08<00:46, 54.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  15%|β–ˆβ–Œ        | 448M/2.93G [00:08<00:44, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  16%|β–ˆβ–Œ        | 464M/2.93G [00:08<00:41, 58.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  16%|β–ˆβ–‹        | 480M/2.93G [00:09<00:49, 49.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  17%|β–ˆβ–‹        | 496M/2.93G [00:09<00:43, 55.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  17%|β–ˆβ–‹        | 512M/2.93G [00:10<01:11, 33.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  18%|β–ˆβ–Š        | 528M/2.93G [00:10<01:00, 39.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  19%|β–ˆβ–Š        | 544M/2.93G [00:10<00:54, 43.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  19%|β–ˆβ–‰        | 560M/2.93G [00:10<00:49, 47.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  20%|β–ˆβ–‰        | 576M/2.93G [00:11<00:45, 52.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  20%|β–ˆβ–ˆ        | 592M/2.93G [00:11<00:48, 48.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  21%|β–ˆβ–ˆ        | 608M/2.93G [00:11<00:49, 46.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  21%|β–ˆβ–ˆβ–       | 624M/2.93G [00:12<00:45, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  22%|β–ˆβ–ˆβ–       | 640M/2.93G [00:12<00:41, 55.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  22%|β–ˆβ–ˆβ–       | 656M/2.93G [00:12<00:42, 53.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  23%|β–ˆβ–ˆβ–Ž       | 672M/2.93G [00:13<00:44, 50.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  24%|β–ˆβ–ˆβ–Ž       | 688M/2.93G [00:13<00:39, 57.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  24%|β–ˆβ–ˆβ–       | 704M/2.93G [00:13<00:37, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  25%|β–ˆβ–ˆβ–       | 720M/2.93G [00:13<00:36, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  25%|β–ˆβ–ˆβ–Œ       | 736M/2.93G [00:14<00:34, 62.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  26%|β–ˆβ–ˆβ–Œ       | 752M/2.93G [00:14<00:33, 64.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  26%|β–ˆβ–ˆβ–Œ       | 768M/2.93G [00:14<00:34, 63.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  27%|β–ˆβ–ˆβ–‹       | 784M/2.93G [00:14<00:34, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  27%|β–ˆβ–ˆβ–‹       | 800M/2.93G [00:15<00:38, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  28%|β–ˆβ–ˆβ–Š       | 816M/2.93G [00:15<00:47, 44.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  28%|β–ˆβ–ˆβ–Š       | 832M/2.93G [00:15<00:42, 49.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  29%|β–ˆβ–ˆβ–‰       | 848M/2.93G [00:16<00:39, 52.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  30%|β–ˆβ–ˆβ–‰       | 864M/2.93G [00:16<00:36, 56.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  30%|β–ˆβ–ˆβ–ˆ       | 880M/2.93G [00:16<00:33, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  31%|β–ˆβ–ˆβ–ˆ       | 896M/2.93G [00:16<00:30, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  31%|β–ˆβ–ˆβ–ˆ       | 912M/2.93G [00:17<00:29, 67.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  32%|β–ˆβ–ˆβ–ˆβ–      | 928M/2.93G [00:17<00:26, 76.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  32%|β–ˆβ–ˆβ–ˆβ–      | 944M/2.93G [00:17<00:25, 77.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 960M/2.93G [00:17<00:25, 77.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 976M/2.93G [00:17<00:28, 69.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  34%|β–ˆβ–ˆβ–ˆβ–      | 992M/2.93G [00:18<00:36, 53.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  34%|β–ˆβ–ˆβ–ˆβ–      | 1.01G/2.93G [00:18<00:33, 56.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  35%|β–ˆβ–ˆβ–ˆβ–      | 1.02G/2.93G [00:18<00:33, 57.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 1.04G/2.93G [00:19<00:30, 62.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 1.06G/2.93G [00:19<00:29, 64.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 1.07G/2.93G [00:19<00:31, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 1.09G/2.93G [00:19<00:29, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  38%|β–ˆβ–ˆβ–ˆβ–Š      | 1.10G/2.93G [00:20<00:28, 63.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  38%|β–ˆβ–ˆβ–ˆβ–Š      | 1.12G/2.93G [00:20<00:27, 65.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  39%|β–ˆβ–ˆβ–ˆβ–‰      | 1.14G/2.93G [00:20<00:33, 54.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  39%|β–ˆβ–ˆβ–ˆβ–‰      | 1.15G/2.93G [00:21<00:31, 56.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  40%|β–ˆβ–ˆβ–ˆβ–‰      | 1.17G/2.93G [00:21<00:32, 54.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 1.18G/2.93G [00:21<00:30, 57.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 1.20G/2.93G [00:21<00:29, 59.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.22G/2.93G [00:22<00:28, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.23G/2.93G [00:22<00:27, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.25G/2.93G [00:22<00:27, 62.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.26G/2.93G [00:22<00:26, 62.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.28G/2.93G [00:23<00:25, 65.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.30G/2.93G [00:23<00:24, 67.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.31G/2.93G [00:23<00:26, 61.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 1.33G/2.93G [00:23<00:23, 68.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 1.34G/2.93G [00:24<00:27, 58.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 1.36G/2.93G [00:24<00:25, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 1.38G/2.93G [00:24<00:29, 52.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 1.39G/2.93G [00:25<00:27, 55.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 1.41G/2.93G [00:25<00:25, 60.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 1.42G/2.93G [00:25<00:24, 62.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 1.44G/2.93G [00:25<00:22, 66.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 1.46G/2.93G [00:25<00:24, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1.47G/2.93G [00:26<00:23, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1.49G/2.93G [00:26<00:23, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 1.50G/2.93G [00:26<00:23, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 1.52G/2.93G [00:27<00:23, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 1.54G/2.93G [00:27<00:25, 55.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 1.55G/2.93G [00:27<00:23, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 1.57G/2.93G [00:27<00:21, 63.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 1.58G/2.93G [00:28<00:21, 62.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 1.60G/2.93G [00:28<00:21, 61.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 1.62G/2.93G [00:28<00:22, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 1.63G/2.93G [00:28<00:21, 59.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 1.65G/2.93G [00:29<00:21, 60.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 1.66G/2.93G [00:29<00:19, 64.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 1.68G/2.93G [00:29<00:18, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1.70G/2.93G [00:29<00:18, 65.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 1.71G/2.93G [00:30<00:19, 63.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1.73G/2.93G [00:30<00:18, 65.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 1.74G/2.93G [00:30<00:17, 67.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1.76G/2.93G [00:30<00:16, 71.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1.78G/2.93G [00:31<00:16, 67.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 1.79G/2.93G [00:31<00:17, 65.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1.81G/2.93G [00:31<00:16, 66.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1.82G/2.93G [00:31<00:15, 70.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1.84G/2.93G [00:31<00:15, 69.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 1.86G/2.93G [00:32<00:16, 66.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1.87G/2.93G [00:32<00:16, 62.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 1.89G/2.93G [00:32<00:15, 65.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1.90G/2.93G [00:32<00:15, 66.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1.92G/2.93G [00:33<00:15, 65.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 1.94G/2.93G [00:33<00:15, 62.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1.95G/2.93G [00:33<00:15, 61.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 1.97G/2.93G [00:33<00:15, 63.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 1.98G/2.93G [00:34<00:14, 66.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 2.00G/2.93G [00:34<00:16, 57.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 2.02G/2.93G [00:34<00:16, 55.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 2.03G/2.93G [00:35<00:15, 58.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 2.05G/2.93G [00:35<00:14, 61.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 2.06G/2.93G [00:35<00:13, 63.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 2.08G/2.93G [00:35<00:13, 62.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 2.10G/2.93G [00:36<00:13, 63.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 2.11G/2.93G [00:36<00:13, 59.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 2.13G/2.93G [00:36<00:14, 56.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 2.14G/2.93G [00:37<00:14, 54.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 2.16G/2.93G [00:37<00:12, 60.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 2.18G/2.93G [00:37<00:11, 63.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 2.19G/2.93G [00:37<00:11, 61.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 2.21G/2.93G [00:37<00:11, 63.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 2.22G/2.93G [00:38<00:10, 68.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 2.24G/2.93G [00:38<00:10, 67.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 2.26G/2.93G [00:38<00:09, 71.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 2.27G/2.93G [00:38<00:09, 67.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 2.29G/2.93G [00:39<00:09, 65.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 2.30G/2.93G [00:39<00:10, 59.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 2.32G/2.93G [00:39<00:09, 64.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 2.34G/2.93G [00:39<00:08, 68.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 2.35G/2.93G [00:40<00:09, 63.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 2.37G/2.93G [00:40<00:09, 56.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2.38G/2.93G [00:40<00:10, 51.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2.40G/2.93G [00:41<00:09, 55.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 2.42G/2.93G [00:41<00:09, 56.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 2.43G/2.93G [00:41<00:08, 57.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 2.45G/2.93G [00:42<00:08, 54.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2.46G/2.93G [00:42<00:12, 36.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2.48G/2.93G [00:43<00:10, 42.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 2.50G/2.93G [00:43<00:08, 48.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 2.51G/2.93G [00:43<00:07, 54.7MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 2.53G/2.93G [00:43<00:07, 52.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 2.54G/2.93G [00:44<00:06, 55.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 2.56G/2.93G [00:44<00:06, 59.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 2.58G/2.93G [00:44<00:06, 57.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 2.59G/2.93G [00:44<00:05, 60.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 2.61G/2.93G [00:45<00:05, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 2.62G/2.93G [00:45<00:04, 67.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2.64G/2.93G [00:45<00:04, 64.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2.66G/2.93G [00:45<00:03, 68.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.67G/2.93G [00:46<00:04, 60.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.69G/2.93G [00:46<00:03, 63.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.70G/2.93G [00:46<00:03, 60.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 2.72G/2.93G [00:46<00:03, 58.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 2.74G/2.93G [00:47<00:03, 62.4MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.75G/2.93G [00:47<00:02, 65.3MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.77G/2.93G [00:47<00:02, 59.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 2.78G/2.93G [00:47<00:02, 58.9MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 2.80G/2.93G [00:48<00:02, 59.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 2.82G/2.93G [00:48<00:01, 56.8MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 2.83G/2.93G [00:48<00:01, 57.2MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 2.85G/2.93G [00:49<00:01, 56.6MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 2.86G/2.93G [00:49<00:01, 59.1MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 2.88G/2.93G [00:49<00:00, 58.5MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 2.90G/2.93G [00:49<00:00, 61.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 2.91G/2.93G [00:49<00:00, 68.0MB/s]
ip-26-0-174-36_243244.1720048960776918215.pt.trace.json.tmp: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2.93G/2.93G [00:50<00:00, 58.3MB/s]