File size: 49,870 Bytes
3ff6bc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
========================
START TIME: Wed Jul  3 22:51:03 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 22:51:05.903000 140623413176128 torch/distributed/run.py:757] 
W0703 22:51:05.903000 140623413176128 torch/distributed/run.py:757] *****************************************
W0703 22:51:05.903000 140623413176128 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 22:51:05.903000 140623413176128 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 22:51:22 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config:
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            run='%date_%jobid',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            seed=42,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            step=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            consumed_train_samples=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            benchmark_csv_path=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            ignore_sanity_checks=True),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    pp=2,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    tp=4,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f9abd3a88e0>,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    tp_linear_async_communication=False,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    expert_parallel_size=1),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 eos_token_id=2,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 hidden_act='silu',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 hidden_size=2048,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 initializer_range=0.02,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 intermediate_size=4096,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 is_llama_config=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 max_position_embeddings=4096,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 num_attention_heads=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 num_hidden_layers=24,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 num_key_value_heads=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 pad_token_id=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 pretraining_tp=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 rms_norm_eps=1e-05,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 rope_scaling=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 rope_theta=10000.0,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 tie_word_embeddings=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 use_cache=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                 vocab_size=50260),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                        init_method=RandomInit(std=0.025),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                        dtype=torch.bfloat16,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                        make_vocab_size_divisible_by=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                        ddp_bucket_cap_mb=25),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                tokenizer_revision=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                tokenizer_max_length=None),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    checkpoint_interval=100000,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    save_initial_state=False,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    resume_checkpoint_path=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            log_level_replica='info',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                            iteration_step_info_interval=1),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          train_steps=20,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          micro_batch_size=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          batch_accumulation_per_replica=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          val_check_interval=-1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          limit_val_batches=0,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                          limit_test_batches=0),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                     adam_beta1=0.9,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                     adam_beta2=0.95,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                     torch_adam_is_fused=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                     name='adamW'),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                zero_stage=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                weight_decay=0.01,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                clip_grad=1.0,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                accumulate_grad_in_fp32=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        lr_warmup_steps=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        lr_warmup_style='linear',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        lr_decay_style='linear',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        lr_decay_steps=19,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        lr_decay_starting_step=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                        min_decay_lr=1e-05)),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                      start_training_step=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                                 hf_dataset_splits='train',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                                 hf_dataset_config_name=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                                                 text_column_name='text'),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                    seed=42,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:                                                    num_loading_workers=0))],
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-4_pp-2_mbz-32')),
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:        lighteval=None)
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Model Config:
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             eos_token_id=2,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             hidden_act='silu',
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             hidden_size=2048,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             initializer_range=0.02,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             intermediate_size=4096,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             is_llama_config=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             max_position_embeddings=4096,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             num_attention_heads=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             num_hidden_layers=24,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             num_key_value_heads=32,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             pad_token_id=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             pretraining_tp=1,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             rms_norm_eps=1e-05,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             rope_scaling=None,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             rope_theta=10000.0,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             tie_word_embeddings=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             use_cache=True,
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:             vocab_size=50260)
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Building model..
[default0]:07/03/2024 22:51:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Setting PP block ranks...
[default1]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default1]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default1]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default3]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default3]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default3]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default4]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default4]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default4]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default7]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default7]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default7]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default2]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default2]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default2]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Total number of parameters: 1.21G (2313.42MiB)
[default0]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Local number of parameters: 173M (329.19MiB)
[default0]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 344.13MiB. Peak allocated: 346.16MiB Peak reserved: 348.00MiB
[default0]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:51:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Parametrizing model parameters using StandardParametrizator
[default5]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default5]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default5]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: Local number of parameters: 131M (249.16MiB)
[default6]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: [After model building] Memory usage: 260.10MiB. Peak allocated: 262.13MiB Peak reserved: 264.00MiB
[default6]:07/03/2024 22:51:35 [INFO|DP=0|PP=1|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 22:51:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 22:51:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 22:51:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 0 has 173M out of 173M (100.00%) params' optimizer states
[default0]:07/03/2024 22:51:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 22:51:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Using `datasets` library
[default0]:07/03/2024 22:51:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 22:51:38 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] There are 1 training stages 
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Stage Training Stage] start from step 1 
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: 
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Start training] datetime: 2024-07-03 22:51:38.760448 | mbs: 32 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 22:51:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:  Memory usage: 1660.89MiB. Peak allocated 1660.89MiB. Peak reserved: 1668.00MiB
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 22:51:38 [WARNING|DP=0|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 22:51:38 [WARNING|DP=0|PP=1|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 22:51:38 [WARNING|DP=0|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 22:51:38 [WARNING|DP=0|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 22:51:38 [WARNING|DP=0|PP=1|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 22:51:39 [WARNING|DP=0|PP=1|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 22:51:39 [WARNING|DP=0|PP=1|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:[rank2]: Traceback (most recent call last):
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]:     trainer.train(dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]:     outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default2]:[rank2]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]:     output = model(**micro_batch)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank2]:     sharded_logits = self.model(
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank2]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]:     output = self.pp_block(**new_kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default2]:[rank2]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default2]:[rank2]:     merged_states = self.gate_up_proj(hidden_states)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]:     return self._call_impl(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]:     return forward_call(*args, **kwargs)
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default2]:[rank2]:     return column_linear(
[default2]:[rank2]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default2]:[rank2]:     return F.linear(input, weight, bias)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 137.94 MiB is free. Including non-PyTorch memory, this process has 79.18 GiB memory in use. Of the allocated memory 66.63 GiB is allocated by PyTorch, and 271.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]:     trainer.train(dataloader)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]:     outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank0]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]:     output = model(**micro_batch)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]:     sharded_logits = self.model(
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank0]:     output = self.pp_block(**new_kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default0]:[rank0]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default0]:[rank0]:     merged_states = self.gate_up_proj(hidden_states)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]:     return self._call_impl(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]:     return forward_call(*args, **kwargs)
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default0]:[rank0]:     return column_linear(
[default0]:[rank0]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default0]:[rank0]:     return F.linear(input, weight, bias)
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU 
[default3]:[rank3]: Traceback (most recent call last):
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]:     trainer.train(dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default3]:[rank3]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default3]:[rank3]:     outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default3]:[rank3]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default3]:[rank3]:     output = model(**micro_batch)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]:     sharded_logits = self.model(
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default3]:[rank3]:     output = self.pp_block(**new_kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default3]:[rank3]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default3]:[rank3]:     merged_states = self.gate_up_proj(hidden_states)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]:     return self._call_impl(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]:     return forward_call(*args, **kwargs)
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default3]:[rank3]:     return column_linear(
[default3]:[rank3]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default3]:[rank3]:     return F.linear(input, weight, bias)
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 377.94 MiB is free. Including non-PyTorch memory, this process has 78.95 GiB memory in use. Of the allocated memory 66.63 GiB is allocated by PyTorch, and 271.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]:     trainer.train(dataloader)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]:     outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank1]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]:     output = model(**micro_batch)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]:     sharded_logits = self.model(
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]:     output = self.pp_block(**new_kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default1]:[rank1]:     hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward
[default1]:[rank1]:     merged_states = self.gate_up_proj(hidden_states)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]:     return self._call_impl(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]:     return forward_call(*args, **kwargs)
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default1]:[rank1]:     return column_linear(
[default1]:[rank1]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default1]:[rank1]:     return F.linear(input, weight, bias)
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU  has a total capacity of 79.33 GiB of which 137.94 MiB is free. Including non-PyTorch memory, this process has 79.18 GiB memory in use. Of the allocated memory 66.63 GiB is allocated by PyTorch, and 271.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation.  See documentation for Memory Management  (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034415 closing signal SIGTERM
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034416 closing signal SIGTERM
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034417 closing signal SIGTERM
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034418 closing signal SIGTERM
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034419 closing signal SIGTERM
W0703 22:51:46.184000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1034420 closing signal SIGTERM
E0703 22:51:47.999000 140623413176128 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1034413) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
  time      : 2024-07-03_22:51:46
  host      : ip-26-0-161-178.ec2.internal
  rank      : 1 (local_rank: 1)
  exitcode  : 1 (pid: 1034414)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-03_22:51:46
  host      : ip-26-0-161-178.ec2.internal
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 1034413)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-161-178: task 0: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.