3outeille's picture
3outeille HF staff
Upload llama-1B/16_GPUS/dp-1_tp-16_pp-1_mbz-64
9c568e9 verified
raw
history blame
77.3 kB
========================
START TIME: Tue Jul 2 16:32:11 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0702 16:32:13.712000 140209290786624 torch/distributed/run.py:757]
W0702 16:32:13.712000 140209290786624 torch/distributed/run.py:757] *****************************************
W0702 16:32:13.712000 140209290786624 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0702 16:32:13.712000 140209290786624 torch/distributed/run.py:757] *****************************************
W0702 16:32:13.732000 139646960318272 torch/distributed/run.py:757]
W0702 16:32:13.732000 139646960318272 torch/distributed/run.py:757] *****************************************
W0702 16:32:13.732000 139646960318272 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0702 16:32:13.732000 139646960318272 torch/distributed/run.py:757] *****************************************
[default0]:07/02/2024 16:32:32 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Vocab Size Padding] Padded vocab (size: 50257) with 15 dummy tokens (new size: 50272)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config:
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: run='%date_%jobid',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: step=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: consumed_train_samples=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: benchmark_csv_path=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ignore_sanity_checks=True),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: parallelism=ParallelismArgs(dp=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp=16,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f87ab5f8910>,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_linear_async_communication=False,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: expert_parallel_size=1),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50272),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: init_method=RandomInit(std=0.025),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dtype=torch.bfloat16,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: make_vocab_size_divisible_by=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ddp_bucket_cap_mb=25),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_revision=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_max_length=None),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoint_interval=100000,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: save_initial_state=False,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: resume_checkpoint_path=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints_path_is_shared_file_system=False),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: logging=LoggingArgs(log_level='info',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: log_level_replica='info',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration_step_info_interval=1),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: train_steps=20,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: micro_batch_size=64,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: batch_accumulation_per_replica=16,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: val_check_interval=-1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_val_batches=0,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_test_batches=0),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta1=0.9,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta2=0.95,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: torch_adam_is_fused=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: name='adamW'),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: zero_stage=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: weight_decay=0.01,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: clip_grad=1.0,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: accumulate_grad_in_fp32=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_steps=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_style='linear',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_style='linear',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_steps=19,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_starting_step=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: min_decay_lr=1e-05)),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: start_training_step=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_splits='train',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_config_name=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_processing_num_proc_per_process=64,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_overwrite_cache=False,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: text_column_name='text'),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_loading_workers=32))],
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-16_pp-1_mbz-64')),
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lighteval=None)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Model Config:
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50272)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Building model..
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Setting PP block ranks...
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: No checkpoint path provided.
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: No checkpoint path provided.
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=11|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=12|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=12|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=11|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default3]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=11|ip-26-0-162-233]: No checkpoint path provided.
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=12|ip-26-0-162-233]: No checkpoint path provided.
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Total number of parameters: 1.11G (2119.44MiB)
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Parametrizing model parameters using StandardParametrizator
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 0 has 69.4M out of 69.4M (100.00%) params' optimizer states
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=10|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=10|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=10|ip-26-0-162-233]: No checkpoint path provided.
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=15|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=15|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default7]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=15|ip-26-0-162-233]: No checkpoint path provided.
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=9|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=9|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=9|ip-26-0-162-233]: No checkpoint path provided.
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default1]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: No checkpoint path provided.
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=8|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=8|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default0]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=8|ip-26-0-162-233]: No checkpoint path provided.
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=13|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=13|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=14|ip-26-0-162-233]: Local number of parameters: 69.4M (132.46MiB)
[default5]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=13|ip-26-0-162-233]: No checkpoint path provided.
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=14|ip-26-0-162-233]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default6]:07/02/2024 16:32:49 [INFO|DP=0|PP=0|TP=14|ip-26-0-162-233]: No checkpoint path provided.
[default0]:07/02/2024 16:32:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/02/2024 16:32:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Using `datasets` library
[default0]:07/02/2024 16:32:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/02/2024 16:32:50 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] There are 1 training stages
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Stage Training Stage] start from step 1
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Start training] datetime: 2024-07-02 16:32:51.517913 | mbs: 64 | grad_accum: 16 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/02/2024 16:32:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 689.57MiB. Peak allocated 689.57MiB. Peak reserved: 710.00MiB
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=5|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=11|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=12|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=10|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=15|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=9|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=8|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=13|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=7|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=6|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=4|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 16:32:51 [WARNING|DP=0|PP=0|TP=14|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded
[default7]:
[default7]:[rank7]: During handling of the above exception, another exception occurred:
[default7]:
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]: trainer.train(dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]: output = model(**micro_batch)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]: sharded_logits = self.model(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]:[rank7]: output = self.pp_block(**new_kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default7]:[rank7]: hidden_states = self.input_layernorm(hidden_states)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default7]:[rank7]: return layer_norm_fn(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default7]:[rank7]: return LayerNormFn.apply(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default7]:[rank7]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default7]:[rank7]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default7]:[rank7]: _layer_norm_fwd_1pass_kernel[(M,)](
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default7]:[rank7]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default7]:[rank7]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default7]:[rank7]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default7]:[rank7]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default7]:[rank7]: fn()
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default7]:[rank7]: self.fn.run(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]: return self.fn.run(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]: return self.fn.run(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]: return self.fn.run(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default7]:[rank7]: self.cache[device][key] = compile(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default7]:[rank7]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default7]:[rank7]: with open(temp_path, mode) as f:
[default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded
[default7]:Exception in thread Thread-2 (_pin_memory_loop):
[default7]:Traceback (most recent call last):
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
[default7]: self.run()
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 953, in run
[default7]: self._target(*self._args, **self._kwargs)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in _pin_memory_loop
[default7]: do_one_step()
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 31, in do_one_step
[default7]: r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/queues.py", line 122, in get
[default7]: return _ForkingPickler.loads(res)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/multiprocessing/reductions.py", line 495, in rebuild_storage_fd
[default7]: fd = df.detach()
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 57, in detach
[default7]: with _resource_sharer.get_connection(self._id) as conn:
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 86, in get_connection
[default7]: c = Client(address, authkey=process.current_process().authkey)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 508, in Client
[default7]: answer_challenge(c, authkey)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 752, in answer_challenge
[default7]: message = connection.recv_bytes(256) # reject large message
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes
[default7]: buf = self._recv_bytes(maxlength)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes
[default7]: buf = self._recv(4)
[default7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 379, in _recv
[default7]: chunk = read(handle, remaining)
[default7]:ConnectionResetError: [Errno 104] Connection reset by peer
[default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded
[default4]:
[default4]:[rank4]: During handling of the above exception, another exception occurred:
[default4]:
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: trainer.train(dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: sharded_logits = self.model(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]:[rank4]: output = self.pp_block(**new_kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default4]:[rank4]: hidden_states = self.input_layernorm(hidden_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default4]:[rank4]: return layer_norm_fn(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default4]:[rank4]: return LayerNormFn.apply(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default4]:[rank4]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default4]:[rank4]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default4]:[rank4]: _layer_norm_fwd_1pass_kernel[(M,)](
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default4]:[rank4]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default4]:[rank4]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default4]:[rank4]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default4]:[rank4]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default4]:[rank4]: fn()
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default4]:[rank4]: self.fn.run(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]: return self.fn.run(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]: return self.fn.run(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]: return self.fn.run(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default4]:[rank4]: self.cache[device][key] = compile(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default4]:[rank4]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default4]:[rank4]: with open(temp_path, mode) as f:
[default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded
[default4]:Exception in thread Thread-2 (_pin_memory_loop):
[default4]:Traceback (most recent call last):
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
[default4]: self.run()
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 953, in run
[default4]: self._target(*self._args, **self._kwargs)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in _pin_memory_loop
[default4]: do_one_step()
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 31, in do_one_step
[default4]: r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/queues.py", line 122, in get
[default4]: return _ForkingPickler.loads(res)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/multiprocessing/reductions.py", line 495, in rebuild_storage_fd
[default4]: fd = df.detach()
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 57, in detach
[default4]: with _resource_sharer.get_connection(self._id) as conn:
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 86, in get_connection
[default4]: c = Client(address, authkey=process.current_process().authkey)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 508, in Client
[default4]: answer_challenge(c, authkey)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 752, in answer_challenge
[default4]: message = connection.recv_bytes(256) # reject large message
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes
[default4]: buf = self._recv_bytes(maxlength)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes
[default4]: buf = self._recv(4)
[default4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 379, in _recv
[default4]: chunk = read(handle, remaining)
[default4]:ConnectionResetError: [Errno 104] Connection reset by peer
[default1]:[rank1]: OSError: [Errno 122] Disk quota exceeded
[default1]:
[default1]:[rank1]: During handling of the above exception, another exception occurred:
[default1]:
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]: trainer.train(dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: output = model(**micro_batch)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]: sharded_logits = self.model(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default1]:[rank1]: hidden_states = self.input_layernorm(hidden_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default1]:[rank1]: return layer_norm_fn(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default1]:[rank1]: return LayerNormFn.apply(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default1]:[rank1]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default1]:[rank1]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default1]:[rank1]: _layer_norm_fwd_1pass_kernel[(M,)](
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default1]:[rank1]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default1]:[rank1]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default1]:[rank1]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default1]:[rank1]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default1]:[rank1]: fn()
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default1]:[rank1]: self.fn.run(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default1]:[rank1]: return self.fn.run(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default1]:[rank1]: return self.fn.run(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default1]:[rank1]: return self.fn.run(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default1]:[rank1]: self.cache[device][key] = compile(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default1]:[rank1]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default1]:[rank1]: with open(temp_path, mode) as f:
[default1]:[rank1]: OSError: [Errno 122] Disk quota exceeded
[default1]:Exception in thread Thread-2 (_pin_memory_loop):
[default1]:Traceback (most recent call last):
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
[default1]: self.run()
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 953, in run
[default1]: self._target(*self._args, **self._kwargs)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 54, in _pin_memory_loop
[default1]: do_one_step()
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 31, in do_one_step
[default1]: r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/queues.py", line 122, in get
[default1]: return _ForkingPickler.loads(res)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/multiprocessing/reductions.py", line 495, in rebuild_storage_fd
[default1]: fd = df.detach()
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 57, in detach
[default1]: with _resource_sharer.get_connection(self._id) as conn:
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/resource_sharer.py", line 86, in get_connection
[default1]: c = Client(address, authkey=process.current_process().authkey)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 508, in Client
[default1]: answer_challenge(c, authkey)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 752, in answer_challenge
[default1]: message = connection.recv_bytes(256) # reject large message
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 216, in recv_bytes
[default1]: buf = self._recv_bytes(maxlength)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 414, in _recv_bytes
[default1]: buf = self._recv(4)
[default1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/multiprocessing/connection.py", line 379, in _recv
[default1]: chunk = read(handle, remaining)
[default1]:ConnectionResetError: [Errno 104] Connection reset by peer
[default0]:[rank8]: OSError: [Errno 122] Disk quota exceeded
[default0]:
[default0]:[rank8]: During handling of the above exception, another exception occurred:
[default0]:
[default0]:[rank8]: Traceback (most recent call last):
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank8]: trainer.train(dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank8]: output = model(**micro_batch)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank8]: sharded_logits = self.model(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank8]: output = self.pp_block(**new_kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default0]:[rank8]: hidden_states = self.input_layernorm(hidden_states)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default0]:[rank8]: return layer_norm_fn(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default0]:[rank8]: return LayerNormFn.apply(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default0]:[rank8]: return super().apply(*args, **kwargs) # type: ignore[misc]
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default0]:[rank8]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default0]:[rank8]: _layer_norm_fwd_1pass_kernel[(M,)](
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default0]:[rank8]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default0]:[rank8]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default0]:[rank8]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default0]:[rank8]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default0]:[rank8]: fn()
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default0]:[rank8]: self.fn.run(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default0]:[rank8]: return self.fn.run(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default0]:[rank8]: return self.fn.run(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default0]:[rank8]: return self.fn.run(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default0]:[rank8]: self.cache[device][key] = compile(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default0]:[rank8]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default0]:[rank8]: with open(temp_path, mode) as f:
[default0]:[rank8]: OSError: [Errno 122] Disk quota exceeded
[default0]:Exception in thread Thread-2 (_pin_memory_loop):
[default0]:Traceback (most recent call last):
[default0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/threading.py", line 1016, in _bootstrap_inner
W0702 16:33:04.893000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 891756 closing signal SIGTERM
W0702 16:33:04.898000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 891758 closing signal SIGTERM
W0702 16:33:04.896000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239957 closing signal SIGTERM
W0702 16:33:04.903000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 891759 closing signal SIGTERM
W0702 16:33:04.900000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239958 closing signal SIGTERM
W0702 16:33:04.903000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239959 closing signal SIGTERM
W0702 16:33:04.908000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 891761 closing signal SIGTERM
W0702 16:33:04.908000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239960 closing signal SIGTERM
W0702 16:33:04.927000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 891762 closing signal SIGTERM
W0702 16:33:04.940000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239961 closing signal SIGTERM
W0702 16:33:04.942000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239962 closing signal SIGTERM
W0702 16:33:04.948000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1239963 closing signal SIGTERM
E0702 16:33:07.383000 140209290786624 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 1 (pid: 891757) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
E0702 16:33:07.446000 139646960318272 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1239956) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-02_16:33:04
host : ip-26-0-160-192.ec2.internal
rank : 4 (local_rank: 4)
exitcode : 1 (pid: 891760)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-02_16:33:04
host : ip-26-0-160-192.ec2.internal
rank : 7 (local_rank: 7)
exitcode : 1 (pid: 891763)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-02_16:33:04
host : ip-26-0-160-192.ec2.internal
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 891757)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
<NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-02_16:33:04
host : ip-26-0-162-233.ec2.internal
rank : 8 (local_rank: 0)
exitcode : 1 (pid: 1239956)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-160-192: task 0: Exited with exit code 1
srun: error: ip-26-0-162-233: task 1: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.