3outeille's picture
3outeille HF staff
Upload llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-4
5bb1b3a verified
raw
history blame
159 kB
========================
START TIME: Wed Jul 3 10:36:49 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 10:36:55.285000 140630562826048 torch/distributed/run.py:757]
W0703 10:36:55.285000 140630562826048 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.285000 140630562826048 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.285000 140630562826048 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.291000 140684057061184 torch/distributed/run.py:757]
W0703 10:36:55.291000 140684057061184 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.291000 140684057061184 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.291000 140684057061184 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.292000 140123951281984 torch/distributed/run.py:757]
W0703 10:36:55.292000 140123951281984 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.292000 140123951281984 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.292000 140123951281984 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.499000 139884851734336 torch/distributed/run.py:757]
W0703 10:36:55.499000 139884851734336 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.499000 139884851734336 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.499000 139884851734336 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.714000 140263626245952 torch/distributed/run.py:757]
W0703 10:36:55.714000 140263626245952 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.714000 140263626245952 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.714000 140263626245952 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.739000 139678393632576 torch/distributed/run.py:757]
W0703 10:36:55.739000 139678393632576 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.739000 139678393632576 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.739000 139678393632576 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.909000 139860926166848 torch/distributed/run.py:757]
W0703 10:36:55.909000 139860926166848 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.909000 139860926166848 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.909000 139860926166848 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.957000 139754488932160 torch/distributed/run.py:757]
W0703 10:36:55.957000 139754488932160 torch/distributed/run.py:757] *****************************************
W0703 10:36:55.957000 139754488932160 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 10:36:55.957000 139754488932160 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 10:37:21 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config:
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: run='%date_%jobid',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: step=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: consumed_train_samples=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: benchmark_csv_path=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ignore_sanity_checks=True),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: parallelism=ParallelismArgs(dp=16,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp=4,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f9175c608e0>,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_linear_async_communication=False,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: expert_parallel_size=1),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dtype=torch.bfloat16,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_revision=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_max_length=None),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoint_interval=100000,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: save_initial_state=False,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: resume_checkpoint_path=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: log_level_replica='info',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration_step_info_interval=1),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: train_steps=20,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: micro_batch_size=4,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: batch_accumulation_per_replica=16,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: val_check_interval=-1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_val_batches=0,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_test_batches=0),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta1=0.9,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta2=0.95,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: torch_adam_is_fused=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: name='adamW'),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: zero_stage=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: weight_decay=0.01,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: clip_grad=1.0,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_steps=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_style='linear',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_style='linear',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_steps=19,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_starting_step=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: min_decay_lr=1e-05)),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: start_training_step=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_splits='train',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_config_name=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_overwrite_cache=False,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: text_column_name='text'),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_loading_workers=0))],
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-4')),
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lighteval=None)
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Model Config:
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu',
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True,
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260)
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Building model..
[default0]:07/03/2024 10:37:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Setting PP block ranks...
[default1]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB)
[default1]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default1]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB)
[default2]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB)
[default2]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default2]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Total number of parameters: 1.11G (2117.09MiB)
[default0]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB)
[default0]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default0]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Parametrizing model parameters using StandardParametrizator
[default3]:07/03/2024 10:37:35 [INFO|DP=2|PP=0|TP=3|ip-26-0-161-103]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=2|PP=0|TP=1|ip-26-0-161-103]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=2|PP=0|TP=2|ip-26-0-161-103]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=2|PP=0|TP=0|ip-26-0-161-103]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=12|PP=0|TP=2|ip-26-0-165-24]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=12|PP=0|TP=3|ip-26-0-165-24]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=12|PP=0|TP=1|ip-26-0-165-24]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=12|PP=0|TP=0|ip-26-0-165-24]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=14|PP=0|TP=0|ip-26-0-166-125]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=14|PP=0|TP=2|ip-26-0-166-125]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=14|PP=0|TP=1|ip-26-0-166-125]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=14|PP=0|TP=3|ip-26-0-166-125]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=15|PP=0|TP=1|ip-26-0-166-125]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=15|PP=0|TP=2|ip-26-0-166-125]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=15|PP=0|TP=0|ip-26-0-166-125]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=15|PP=0|TP=3|ip-26-0-166-125]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=1|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=8|PP=0|TP=0|ip-26-0-163-147]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=13|PP=0|TP=1|ip-26-0-165-24]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=13|PP=0|TP=0|ip-26-0-165-24]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=3|PP=0|TP=1|ip-26-0-161-103]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=13|PP=0|TP=2|ip-26-0-165-24]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=8|PP=0|TP=3|ip-26-0-163-147]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=8|PP=0|TP=2|ip-26-0-163-147]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=8|PP=0|TP=1|ip-26-0-163-147]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=1|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=4|PP=0|TP=2|ip-26-0-161-138]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=3|PP=0|TP=3|ip-26-0-161-103]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=3|PP=0|TP=0|ip-26-0-161-103]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=13|PP=0|TP=3|ip-26-0-165-24]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=4|PP=0|TP=3|ip-26-0-161-138]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=3|PP=0|TP=2|ip-26-0-161-103]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=10|PP=0|TP=1|ip-26-0-164-207]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=10|PP=0|TP=3|ip-26-0-164-207]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=10|PP=0|TP=2|ip-26-0-164-207]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=10|PP=0|TP=0|ip-26-0-164-207]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=9|PP=0|TP=0|ip-26-0-163-147]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=9|PP=0|TP=2|ip-26-0-163-147]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=4|PP=0|TP=0|ip-26-0-161-138]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=9|PP=0|TP=1|ip-26-0-163-147]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=4|PP=0|TP=1|ip-26-0-161-138]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=9|PP=0|TP=3|ip-26-0-163-147]: No checkpoint path provided.
[default0]:07/03/2024 10:37:35 [INFO|DP=6|PP=0|TP=0|ip-26-0-161-78]: No checkpoint path provided.
[default1]:07/03/2024 10:37:35 [INFO|DP=6|PP=0|TP=1|ip-26-0-161-78]: No checkpoint path provided.
[default4]:07/03/2024 10:37:35 [INFO|DP=7|PP=0|TP=0|ip-26-0-161-78]: No checkpoint path provided.
[default3]:07/03/2024 10:37:35 [INFO|DP=6|PP=0|TP=3|ip-26-0-161-78]: No checkpoint path provided.
[default6]:07/03/2024 10:37:35 [INFO|DP=7|PP=0|TP=2|ip-26-0-161-78]: No checkpoint path provided.
[default7]:07/03/2024 10:37:35 [INFO|DP=7|PP=0|TP=3|ip-26-0-161-78]: No checkpoint path provided.
[default5]:07/03/2024 10:37:35 [INFO|DP=7|PP=0|TP=1|ip-26-0-161-78]: No checkpoint path provided.
[default2]:07/03/2024 10:37:35 [INFO|DP=6|PP=0|TP=2|ip-26-0-161-78]: No checkpoint path provided.
[default7]:07/03/2024 10:37:36 [INFO|DP=5|PP=0|TP=3|ip-26-0-161-138]: No checkpoint path provided.
[default6]:07/03/2024 10:37:36 [INFO|DP=5|PP=0|TP=2|ip-26-0-161-138]: No checkpoint path provided.
[default4]:07/03/2024 10:37:36 [INFO|DP=5|PP=0|TP=0|ip-26-0-161-138]: No checkpoint path provided.
[default5]:07/03/2024 10:37:36 [INFO|DP=5|PP=0|TP=1|ip-26-0-161-138]: No checkpoint path provided.
[default5]:07/03/2024 10:37:36 [INFO|DP=11|PP=0|TP=1|ip-26-0-164-207]: No checkpoint path provided.
[default4]:07/03/2024 10:37:36 [INFO|DP=11|PP=0|TP=0|ip-26-0-164-207]: No checkpoint path provided.
[default6]:07/03/2024 10:37:36 [INFO|DP=11|PP=0|TP=2|ip-26-0-164-207]: No checkpoint path provided.
[default7]:07/03/2024 10:37:36 [INFO|DP=11|PP=0|TP=3|ip-26-0-164-207]: No checkpoint path provided.
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 0 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 1 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 2 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 3 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 4 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 5 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 6 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 7 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 8 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 9 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 10 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 11 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 12 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 13 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 14 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 15 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 10:37:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 10:37:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Using `datasets` library
[default0]:07/03/2024 10:37:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 10:37:40 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]:
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Start training] datetime: 2024-07-03 10:37:42.866209 | mbs: 4 | grad_accum: 16 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 10:37:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1678.92MiB. Peak allocated 1678.92MiB. Peak reserved: 1736.00MiB
[default1]:07/03/2024 10:37:43 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=9|PP=0|TP=0|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=12|PP=0|TP=2|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=1|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=2|PP=0|TP=3|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=8|PP=0|TP=2|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=6|PP=0|TP=3|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=3|PP=0|TP=0|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=3|PP=0|TP=2|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=5|PP=0|TP=2|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=6|PP=0|TP=2|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=5|PP=0|TP=1|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=6|PP=0|TP=1|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=11|PP=0|TP=1|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=11|PP=0|TP=0|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=10|PP=0|TP=2|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=1|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=8|PP=0|TP=0|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=9|PP=0|TP=2|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=4|PP=0|TP=0|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=5|PP=0|TP=3|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=13|PP=0|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=13|PP=0|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=6|PP=0|TP=0|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=12|PP=0|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=3|PP=0|TP=1|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=12|PP=0|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=13|PP=0|TP=2|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=4|PP=0|TP=2|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=13|PP=0|TP=3|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=9|PP=0|TP=1|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=8|PP=0|TP=3|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=8|PP=0|TP=1|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=7|PP=0|TP=2|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=7|PP=0|TP=1|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=3|PP=0|TP=3|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=2|PP=0|TP=0|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=15|PP=0|TP=2|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=15|PP=0|TP=0|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 10:37:43 [WARNING|DP=15|PP=0|TP=1|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=4|PP=0|TP=1|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=4|PP=0|TP=3|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=14|PP=0|TP=1|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=14|PP=0|TP=2|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=14|PP=0|TP=0|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=9|PP=0|TP=3|ip-26-0-163-147]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=10|PP=0|TP=1|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=10|PP=0|TP=3|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=15|PP=0|TP=3|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=14|PP=0|TP=3|ip-26-0-166-125]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 10:37:43 [WARNING|DP=11|PP=0|TP=2|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:43 [WARNING|DP=11|PP=0|TP=3|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 10:37:43 [WARNING|DP=12|PP=0|TP=3|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 10:37:43 [WARNING|DP=2|PP=0|TP=1|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 10:37:43 [WARNING|DP=2|PP=0|TP=2|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 10:37:43 [WARNING|DP=10|PP=0|TP=0|ip-26-0-164-207]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 10:37:43 [WARNING|DP=5|PP=0|TP=0|ip-26-0-161-138]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:07/03/2024 10:37:48 [WARNING|DP=7|PP=0|TP=0|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 10:37:48 [WARNING|DP=7|PP=0|TP=3|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default0]:07/03/2024 10:37:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1755.21MiB. Peak allocated 13020.85MiB. Peak reserved: 14212.00MiB
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default0]:07/03/2024 10:38:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 22.7K | tokens_per_sec: 185K | tokens_per_sec_per_gpu: 2.89K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 0.0001 | model_tflops_per_gpu: 26.2 | hardware_tflops_per_gpu: 26.2 | grad_norm: 20.6 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 15G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
[default0]:07/03/2024 10:38:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 2979.22MiB. Peak reserved: 14318.00MiB
[default0]:07/03/2024 10:38:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.61MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 3.31K | tokens_per_sec: 1.27M | tokens_per_sec_per_gpu: 19.8K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.53e-05 | model_tflops_per_gpu: 180 | hardware_tflops_per_gpu: 180 | grad_norm: 20.7 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 15G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
[default0]:07/03/2024 10:38:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 2979.23MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.61MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:STAGE:2024-07-03 10:38:12 88701:88701 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default0]:07/03/2024 10:38:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 3.28K | tokens_per_sec: 1.28M | tokens_per_sec_per_gpu: 20K | global_batch_size: 1.02K | lm_loss: 11.6 | lr: 9.05e-05 | model_tflops_per_gpu: 181 | hardware_tflops_per_gpu: 181 | grad_norm: 194 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 15G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
[default0]:07/03/2024 10:38:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 2979.23MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.61MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 3.45K | tokens_per_sec: 1.22M | tokens_per_sec_per_gpu: 19K | global_batch_size: 1.02K | lm_loss: 13.6 | lr: 8.58e-05 | model_tflops_per_gpu: 172 | hardware_tflops_per_gpu: 172 | grad_norm: 28 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 15G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
[default0]:07/03/2024 10:38:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 2979.23MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 3.44K | tokens_per_sec: 1.22M | tokens_per_sec_per_gpu: 19.1K | global_batch_size: 1.02K | lm_loss: 12 | lr: 8.11e-05 | model_tflops_per_gpu: 173 | hardware_tflops_per_gpu: 173 | grad_norm: 48.9
[default0]:07/03/2024 10:38:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:38:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 3.39K | tokens_per_sec: 1.24M | tokens_per_sec_per_gpu: 19.4K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 176 | hardware_tflops_per_gpu: 176 | grad_norm: 19.8
[default0]:STAGE:2024-07-03 10:38:31 88701:88701 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 10:38:31 88701:88701 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default0]:07/03/2024 10:39:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 7 / 20 | consumed_tokens: 29.4M | elapsed_time_per_iteration_ms: 2.87K | tokens_per_sec: 1.46M | tokens_per_sec_per_gpu: 22.8K | global_batch_size: 1.02K | lm_loss: 10.4 | lr: 7.16e-05 | model_tflops_per_gpu: 207 | hardware_tflops_per_gpu: 207 | grad_norm: 8.63
[default0]:07/03/2024 10:39:44 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:47 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 8 / 20 | consumed_tokens: 33.6M | elapsed_time_per_iteration_ms: 2.85K | tokens_per_sec: 1.47M | tokens_per_sec_per_gpu: 23K | global_batch_size: 1.02K | lm_loss: 9.67 | lr: 6.68e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 6.9
[default0]:07/03/2024 10:39:47 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 9 / 20 | consumed_tokens: 37.7M | elapsed_time_per_iteration_ms: 2.85K | tokens_per_sec: 1.47M | tokens_per_sec_per_gpu: 23K | global_batch_size: 1.02K | lm_loss: 11.3 | lr: 6.21e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 53.1
[default0]:07/03/2024 10:39:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 10 / 20 | consumed_tokens: 41.9M | elapsed_time_per_iteration_ms: 2.85K | tokens_per_sec: 1.47M | tokens_per_sec_per_gpu: 23K | global_batch_size: 1.02K | lm_loss: 9.11 | lr: 5.74e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 16.3
[default0]:07/03/2024 10:39:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 11 / 20 | consumed_tokens: 46.1M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 8.58 | lr: 5.26e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 7.59
[default0]:07/03/2024 10:39:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:39:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 12 / 20 | consumed_tokens: 50.3M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 8.38 | lr: 4.79e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 5.81
[default0]:07/03/2024 10:39:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 13 / 20 | consumed_tokens: 54.5M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 8.17 | lr: 4.32e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 5.61
[default0]:07/03/2024 10:40:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:04 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 14 / 20 | consumed_tokens: 58.7M | elapsed_time_per_iteration_ms: 2.85K | tokens_per_sec: 1.47M | tokens_per_sec_per_gpu: 23K | global_batch_size: 1.02K | lm_loss: 7.91 | lr: 3.84e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 5.4
[default0]:07/03/2024 10:40:04 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 15 / 20 | consumed_tokens: 62.9M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.69 | lr: 3.37e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 4.97
[default0]:07/03/2024 10:40:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 16 / 20 | consumed_tokens: 67.1M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.54 | lr: 2.89e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 4.95
[default0]:07/03/2024 10:40:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 17 / 20 | consumed_tokens: 71.3M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.46 | lr: 2.42e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 5.04
[default0]:07/03/2024 10:40:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 18 / 20 | consumed_tokens: 75.5M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.37 | lr: 1.95e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 5.8
[default0]:07/03/2024 10:40:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 19 / 20 | consumed_tokens: 79.7M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.23 | lr: 1.47e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 4.11
[default0]:07/03/2024 10:40:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.60MiB. Peak allocated 13153.25MiB. Peak reserved: 14332.00MiB
[default0]:07/03/2024 10:40:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 20 / 20 | consumed_tokens: 83.9M | elapsed_time_per_iteration_ms: 2.84K | tokens_per_sec: 1.48M | tokens_per_sec_per_gpu: 23.1K | global_batch_size: 1.02K | lm_loss: 7.15 | lr: 1e-05 | model_tflops_per_gpu: 209 | hardware_tflops_per_gpu: 209 | grad_norm: 3.02
W0703 10:40:42.465000 140678396327680 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-166-125.ec2.internal_217972_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousTimeoutError.
W0703 10:40:42.507000 139860926166848 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-78.ec2.internal_54053_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 10:40:42.512000 139860926166848 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-78.ec2.internal_54053_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Saved 1 csv files over 1 completed logs
Processing file: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-4/profiler/ip-26-0-160-225_88701.1720003165759096233.pt.trace.json
Results written to /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-4/profiler.csv
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 0%| | 0.00/2.25G [00:00<?, ?B/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 0%| | 6.59M/2.25G [00:00<00:34, 64.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 1%| | 16.0M/2.25G [00:00<00:38, 57.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 1%|▏ | 32.0M/2.25G [00:00<00:35, 62.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 2%|▏ | 48.0M/2.25G [00:00<00:37, 59.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 3%|β–Ž | 64.0M/2.25G [00:01<00:37, 57.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 4%|β–Ž | 80.0M/2.25G [00:01<00:32, 66.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 4%|▍ | 96.0M/2.25G [00:01<00:32, 66.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 5%|▍ | 112M/2.25G [00:01<00:30, 70.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 6%|β–Œ | 128M/2.25G [00:01<00:31, 67.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 6%|β–‹ | 144M/2.25G [00:02<00:33, 63.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 7%|β–‹ | 160M/2.25G [00:02<00:33, 62.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 8%|β–Š | 176M/2.25G [00:02<00:32, 63.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 9%|β–Š | 192M/2.25G [00:02<00:31, 66.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 9%|β–‰ | 208M/2.25G [00:03<00:28, 72.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 10%|β–‰ | 224M/2.25G [00:03<00:27, 75.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 11%|β–ˆ | 240M/2.25G [00:03<00:26, 75.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 11%|β–ˆβ– | 256M/2.25G [00:03<00:26, 75.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 12%|β–ˆβ– | 272M/2.25G [00:03<00:26, 74.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 13%|β–ˆβ–Ž | 288M/2.25G [00:04<00:28, 69.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 14%|β–ˆβ–Ž | 304M/2.25G [00:04<00:31, 62.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 14%|β–ˆβ– | 320M/2.25G [00:04<00:30, 63.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 15%|β–ˆβ– | 336M/2.25G [00:05<00:30, 62.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 16%|β–ˆβ–Œ | 352M/2.25G [00:05<00:30, 62.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 16%|β–ˆβ–‹ | 368M/2.25G [00:05<00:28, 67.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 17%|β–ˆβ–‹ | 384M/2.25G [00:05<00:26, 71.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 18%|β–ˆβ–Š | 400M/2.25G [00:05<00:27, 68.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 18%|β–ˆβ–Š | 416M/2.25G [00:06<00:25, 71.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 19%|β–ˆβ–‰ | 432M/2.25G [00:06<00:28, 63.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 20%|β–ˆβ–‰ | 448M/2.25G [00:06<00:29, 60.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 21%|β–ˆβ–ˆ | 464M/2.25G [00:07<00:28, 62.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 21%|β–ˆβ–ˆβ– | 480M/2.25G [00:07<00:29, 59.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 22%|β–ˆβ–ˆβ– | 496M/2.25G [00:07<00:27, 63.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 23%|β–ˆβ–ˆβ–Ž | 512M/2.25G [00:07<00:28, 60.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 23%|β–ˆβ–ˆβ–Ž | 528M/2.25G [00:08<00:27, 62.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 24%|β–ˆβ–ˆβ– | 544M/2.25G [00:08<00:24, 69.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 25%|β–ˆβ–ˆβ– | 560M/2.25G [00:08<00:24, 68.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 26%|β–ˆβ–ˆβ–Œ | 576M/2.25G [00:08<00:24, 68.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 26%|β–ˆβ–ˆβ–‹ | 592M/2.25G [00:08<00:23, 69.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 27%|β–ˆβ–ˆβ–‹ | 608M/2.25G [00:09<00:23, 69.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 28%|β–ˆβ–ˆβ–Š | 624M/2.25G [00:09<00:23, 68.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 28%|β–ˆβ–ˆβ–Š | 640M/2.25G [00:10<00:39, 40.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 29%|β–ˆβ–ˆβ–‰ | 656M/2.25G [00:10<00:35, 44.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 30%|β–ˆβ–ˆβ–‰ | 672M/2.25G [00:10<00:30, 51.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 31%|β–ˆβ–ˆβ–ˆ | 688M/2.25G [00:10<00:27, 56.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 31%|β–ˆβ–ˆβ–ˆβ– | 704M/2.25G [00:11<00:27, 55.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 32%|β–ˆβ–ˆβ–ˆβ– | 720M/2.25G [00:11<00:26, 58.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 33%|β–ˆβ–ˆβ–ˆβ–Ž | 736M/2.25G [00:11<00:26, 57.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 33%|β–ˆβ–ˆβ–ˆβ–Ž | 752M/2.25G [00:11<00:23, 65.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 34%|β–ˆβ–ˆβ–ˆβ– | 768M/2.25G [00:12<00:22, 67.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 35%|β–ˆβ–ˆβ–ˆβ– | 784M/2.25G [00:12<00:23, 62.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 36%|β–ˆβ–ˆβ–ˆβ–Œ | 800M/2.25G [00:12<00:22, 65.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 36%|β–ˆβ–ˆβ–ˆβ–‹ | 816M/2.25G [00:13<00:29, 48.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 37%|β–ˆβ–ˆβ–ˆβ–‹ | 832M/2.25G [00:13<00:27, 50.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 38%|β–ˆβ–ˆβ–ˆβ–Š | 848M/2.25G [00:13<00:24, 57.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 38%|β–ˆβ–ˆβ–ˆβ–Š | 864M/2.25G [00:14<00:31, 44.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 39%|β–ˆβ–ˆβ–ˆβ–‰ | 880M/2.25G [00:14<00:27, 50.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 40%|β–ˆβ–ˆβ–ˆβ–‰ | 896M/2.25G [00:14<00:24, 55.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 41%|β–ˆβ–ˆβ–ˆβ–ˆ | 912M/2.25G [00:14<00:23, 56.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 41%|β–ˆβ–ˆβ–ˆβ–ˆ | 928M/2.25G [00:15<00:22, 58.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 42%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 944M/2.25G [00:15<00:21, 62.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 960M/2.25G [00:15<00:19, 67.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 976M/2.25G [00:15<00:18, 70.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 44%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 992M/2.25G [00:15<00:16, 75.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 45%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 1.01G/2.25G [00:16<00:17, 71.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.02G/2.25G [00:16<00:18, 67.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.04G/2.25G [00:16<00:16, 71.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.06G/2.25G [00:16<00:17, 70.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.07G/2.25G [00:17<00:15, 76.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.09G/2.25G [00:17<00:15, 74.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.10G/2.25G [00:17<00:17, 67.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.12G/2.25G [00:17<00:19, 59.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.14G/2.25G [00:18<00:18, 59.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.15G/2.25G [00:18<00:17, 64.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.17G/2.25G [00:18<00:15, 68.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.18G/2.25G [00:18<00:15, 67.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.20G/2.25G [00:19<00:15, 67.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.22G/2.25G [00:19<00:13, 75.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.23G/2.25G [00:19<00:14, 70.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.25G/2.25G [00:21<00:47, 21.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.26G/2.25G [00:21<00:36, 27.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.28G/2.25G [00:21<00:28, 33.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.30G/2.25G [00:22<00:23, 40.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.31G/2.25G [00:22<00:20, 46.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.33G/2.25G [00:22<00:17, 52.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.34G/2.25G [00:23<00:20, 43.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.36G/2.25G [00:23<00:17, 50.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.38G/2.25G [00:23<00:17, 50.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.39G/2.25G [00:23<00:16, 52.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.41G/2.25G [00:24<00:17, 48.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.42G/2.25G [00:24<00:15, 53.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.44G/2.25G [00:24<00:15, 53.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.46G/2.25G [00:24<00:14, 56.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.47G/2.25G [00:25<00:12, 62.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.49G/2.25G [00:25<00:12, 61.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.50G/2.25G [00:25<00:13, 54.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.52G/2.25G [00:26<00:14, 52.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.54G/2.25G [00:26<00:13, 51.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.55G/2.25G [00:26<00:12, 55.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.57G/2.25G [00:26<00:11, 58.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.58G/2.25G [00:27<00:11, 58.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.60G/2.25G [00:27<00:10, 61.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.62G/2.25G [00:27<00:11, 56.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.63G/2.25G [00:27<00:09, 63.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.65G/2.25G [00:28<00:09, 65.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.66G/2.25G [00:28<00:08, 66.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.68G/2.25G [00:29<00:18, 30.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.70G/2.25G [00:29<00:15, 36.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.71G/2.25G [00:30<00:12, 43.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.73G/2.25G [00:30<00:13, 40.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.74G/2.25G [00:30<00:11, 44.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.76G/2.25G [00:30<00:09, 51.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.78G/2.25G [00:31<00:09, 52.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 1.79G/2.25G [00:31<00:08, 54.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.81G/2.25G [00:31<00:08, 53.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 1.82G/2.25G [00:32<00:08, 51.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.84G/2.25G [00:32<00:07, 53.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.86G/2.25G [00:32<00:06, 59.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 1.87G/2.25G [00:33<00:07, 48.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.89G/2.25G [00:33<00:06, 55.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1.90G/2.25G [00:33<00:06, 55.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.92G/2.25G [00:33<00:05, 60.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 1.94G/2.25G [00:34<00:05, 61.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.95G/2.25G [00:34<00:04, 62.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 1.97G/2.25G [00:34<00:04, 63.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1.98G/2.25G [00:34<00:05, 53.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 2.00G/2.25G [00:35<00:04, 59.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 2.02G/2.25G [00:35<00:03, 61.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2.03G/2.25G [00:35<00:03, 58.2MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2.05G/2.25G [00:36<00:03, 53.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.06G/2.25G [00:36<00:03, 60.1MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.08G/2.25G [00:36<00:02, 61.4MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 2.10G/2.25G [00:36<00:02, 62.9MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.11G/2.25G [00:37<00:02, 52.5MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 2.13G/2.25G [00:37<00:02, 56.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 2.14G/2.25G [00:37<00:01, 59.6MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 2.16G/2.25G [00:37<00:01, 67.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 2.18G/2.25G [00:38<00:01, 71.8MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 2.19G/2.25G [00:38<00:00, 63.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 2.21G/2.25G [00:38<00:00, 63.0MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 2.22G/2.25G [00:38<00:00, 63.7MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 2.24G/2.25G [00:39<00:00, 66.3MB/s] ip-26-0-160-225_88701.1720003165759096233.pt.trace.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2.25G/2.25G [00:39<00:00, 57.3MB/s]