|
======================== |
|
START TIME: Tue Jul 2 14:16:30 UTC 2024 |
|
python3 version = Python 3.10.14 |
|
======================== |
|
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well. |
|
Token is valid (permission: write). |
|
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token |
|
Login successful |
|
Already on 'bench_cluster' |
|
M examples/config_tiny_llama.py |
|
M examples/config_tiny_llama.yaml |
|
M examples/train_tiny_llama.sh |
|
M src/nanotron/models/llama.py |
|
M src/nanotron/trainer.py |
|
Your branch is up to date with 'origin/bench_cluster'. |
|
Job status: RUNNING |
|
W0702 14:16:33.087000 140583648827200 torch/distributed/run.py:757] |
|
W0702 14:16:33.087000 140583648827200 torch/distributed/run.py:757] ***************************************** |
|
W0702 14:16:33.087000 140583648827200 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. |
|
W0702 14:16:33.087000 140583648827200 torch/distributed/run.py:757] ***************************************** |
|
W0702 14:16:33.088000 139710490199872 torch/distributed/run.py:757] |
|
W0702 14:16:33.088000 139710490199872 torch/distributed/run.py:757] ***************************************** |
|
W0702 14:16:33.088000 139710490199872 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. |
|
W0702 14:16:33.088000 139710490199872 torch/distributed/run.py:757] ***************************************** |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Config: |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Config(general=GeneralArgs(project='bench_cluster', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: run='%date_%jobid', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: seed=42, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: step=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: consumed_train_samples=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: benchmark_csv_path=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: ignore_sanity_checks=True), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: parallelism=ParallelismArgs(dp=16, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pp=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tp=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fb9ad694910>, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tp_linear_async_communication=False, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: expert_parallel_size=1), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: eos_token_id=2, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hidden_act='silu', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hidden_size=2048, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: initializer_range=0.02, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: intermediate_size=4096, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: is_llama_config=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: max_position_embeddings=4096, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_attention_heads=32, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_hidden_layers=24, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_key_value_heads=32, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pad_token_id=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pretraining_tp=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rms_norm_eps=1e-05, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rope_scaling=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rope_theta=10000.0, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tie_word_embeddings=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: use_cache=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: vocab_size=50257), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: init_method=RandomInit(std=0.025), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: dtype=torch.bfloat16, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: make_vocab_size_divisible_by=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: ddp_bucket_cap_mb=25), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tokenizer_revision=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tokenizer_max_length=None), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: checkpoint_interval=100000, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: save_initial_state=False, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: resume_checkpoint_path=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: checkpoints_path_is_shared_file_system=False), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: logging=LoggingArgs(log_level='info', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: log_level_replica='info', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: iteration_step_info_interval=1), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tokens=TokensArgs(sequence_length=4096, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: train_steps=20, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: micro_batch_size=32, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: batch_accumulation_per_replica=2, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: val_check_interval=-1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: limit_val_batches=0, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: limit_test_batches=0), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: adam_beta1=0.9, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: adam_beta2=0.95, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: torch_adam_is_fused=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: name='adamW'), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: zero_stage=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: weight_decay=0.01, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: clip_grad=1.0, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: accumulate_grad_in_fp32=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lr_warmup_steps=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lr_warmup_style='linear', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lr_decay_style='linear', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lr_decay_steps=19, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lr_decay_starting_step=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: min_decay_lr=1e-05)), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: data_stages=[DatasetStageArgs(name='Training Stage', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: start_training_step=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hf_dataset_splits='train', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hf_dataset_config_name=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: dataset_processing_num_proc_per_process=64, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: dataset_overwrite_cache=False, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: text_column_name='text'), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: seed=42, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_loading_workers=32))], |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-16_tp-1_pp-1_mbz-32')), |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: lighteval=None) |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Model Config: |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: LlamaConfig(bos_token_id=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: eos_token_id=2, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hidden_act='silu', |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: hidden_size=2048, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: initializer_range=0.02, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: intermediate_size=4096, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: is_llama_config=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: max_position_embeddings=4096, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_attention_heads=32, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_hidden_layers=24, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: num_key_value_heads=32, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pad_token_id=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: pretraining_tp=1, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rms_norm_eps=1e-05, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rope_scaling=None, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: rope_theta=10000.0, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: tie_word_embeddings=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: use_cache=True, |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: vocab_size=50257) |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Building model.. |
|
[default0]:07/02/2024 14:16:51 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Setting PP block ranks... |
|
[default4]:07/02/2024 14:17:01 [INFO|DP=12|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default6]:07/02/2024 14:17:01 [INFO|DP=14|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default5]:07/02/2024 14:17:01 [INFO|DP=13|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default1]:07/02/2024 14:17:01 [INFO|DP=9|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=8|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default3]:07/02/2024 14:17:01 [INFO|DP=11|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default2]:07/02/2024 14:17:01 [INFO|DP=10|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default7]:07/02/2024 14:17:01 [INFO|DP=15|PP=0|TP=0|ip-26-0-171-56]: No checkpoint path provided. |
|
[default6]:07/02/2024 14:17:01 [INFO|DP=6|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Total number of parameters: 1.11G (2116.51MiB) |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Local number of parameters: 1.11G (2116.51MiB) |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [After model building] Memory usage: 2140.53MiB. Peak allocated: 2338.88MiB Peak reserved: 2392.00MiB |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default0]:07/02/2024 14:17:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Parametrizing model parameters using StandardParametrizator |
|
[default5]:07/02/2024 14:17:01 [INFO|DP=5|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default7]:07/02/2024 14:17:01 [INFO|DP=7|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default3]:07/02/2024 14:17:01 [INFO|DP=3|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default4]:07/02/2024 14:17:01 [INFO|DP=4|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default2]:07/02/2024 14:17:01 [INFO|DP=2|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default1]:07/02/2024 14:17:01 [INFO|DP=1|PP=0|TP=0|ip-26-0-170-31]: No checkpoint path provided. |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [Optimizer Building] Using LearningRateForSP as learning rate |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] Size of optimizer params per rank: |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 0 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 1 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 2 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 3 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 4 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 5 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 6 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 7 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 8 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 9 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 10 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 11 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 12 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 13 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 14 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [ZeRO sharding] DP Rank 15 has 69.4M out of 1.11G (6.25%) params' optimizer states |
|
[default0]:07/02/2024 14:17:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples |
|
[default0]:07/02/2024 14:17:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Using `datasets` library |
|
[default0]:07/02/2024 14:17:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4') |
|
[default0]:07/02/2024 14:17:12 [WARNING|DP=0|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [Training Plan] There are 1 training stages |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [Stage Training Stage] start from step 1 |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: [Start training] datetime: 2024-07-02 14:17:13.257993 | mbs: 32 | grad_accum: 2 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0 |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps |
|
[default0]:07/02/2024 14:17:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-170-31]: Memory usage: 6639.09MiB. Peak allocated 6639.09MiB. Peak reserved: 6892.00MiB |
|
[default5]:07/02/2024 14:17:13 [WARNING|DP=13|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:07/02/2024 14:17:13 [WARNING|DP=8|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:07/02/2024 14:17:13 [WARNING|DP=15|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:07/02/2024 14:17:13 [WARNING|DP=2|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:07/02/2024 14:17:13 [WARNING|DP=3|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default7]:07/02/2024 14:17:13 [WARNING|DP=7|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:07/02/2024 14:17:13 [WARNING|DP=12|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:07/02/2024 14:17:13 [WARNING|DP=9|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:07/02/2024 14:17:13 [WARNING|DP=11|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:07/02/2024 14:17:13 [WARNING|DP=14|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:07/02/2024 14:17:13 [WARNING|DP=10|PP=0|TP=0|ip-26-0-171-56]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default2]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default3]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default6]:07/02/2024 14:17:13 [WARNING|DP=6|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:07/02/2024 14:17:13 [WARNING|DP=5|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default5]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default1]:07/02/2024 14:17:13 [WARNING|DP=1|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:Repo card metadata block was not found. Setting CardData to empty. |
|
[default4]:07/02/2024 14:17:13 [WARNING|DP=4|PP=0|TP=0|ip-26-0-170-31]: Repo card metadata block was not found. Setting CardData to empty. |
|
[default0]:[rank0]: Traceback (most recent call last): |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default0]:[rank0]: trainer.train(dataloader) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default0]:[rank0]: output = model(**micro_batch) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default0]:[rank0]: sharded_logits = self.model( |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default0]:[rank0]: output = self.pp_block(**new_kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default0]:[rank0]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward |
|
[default0]:[rank0]: hidden_states = self.down_proj(self.split_silu_mul(merged_states)) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward |
|
[default0]:[rank0]: return self.act(gate_states) * up_states |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank0]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank0]: return forward_call(*args, **kwargs) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/activations.py", line 149, in forward |
|
[default0]:[rank0]: return nn.functional.silu(input) |
|
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/functional.py", line 2102, in silu |
|
[default0]:[rank0]: return torch._C._nn.silu(input) |
|
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU |
|
[default4]:[rank4]: Traceback (most recent call last): |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default4]:[rank4]: trainer.train(dataloader) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default4]:[rank4]: output = model(**micro_batch) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default4]:[rank4]: sharded_logits = self.model( |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default4]:[rank4]: output = self.pp_block(**new_kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default4]:[rank4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default4]:[rank4]: merged_states = self.gate_up_proj(hidden_states) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank4]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank4]: return forward_call(*args, **kwargs) |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default4]:[rank4]: return column_linear( |
|
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default4]:[rank4]: return F.linear(input, weight, bias) |
|
[default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default6]:[rank6]: Traceback (most recent call last): |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default6]:[rank6]: trainer.train(dataloader) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default6]:[rank6]: output = model(**micro_batch) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default6]:[rank6]: sharded_logits = self.model( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default6]:[rank6]: output = self.pp_block(**new_kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default6]:[rank6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default6]:[rank6]: merged_states = self.gate_up_proj(hidden_states) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank6]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank6]: return forward_call(*args, **kwargs) |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default6]:[rank6]: return column_linear( |
|
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default6]:[rank6]: return F.linear(input, weight, bias) |
|
[default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default3]:[rank11]: Traceback (most recent call last): |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default3]:[rank11]: trainer.train(dataloader) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default3]:[rank11]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default3]:[rank11]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default3]:[rank11]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default3]:[rank11]: output = model(**micro_batch) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default3]:[rank11]: sharded_logits = self.model( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default3]:[rank11]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default3]:[rank11]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default3]:[rank11]: output = self.pp_block(**new_kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default3]:[rank11]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default3]:[rank11]: merged_states = self.gate_up_proj(hidden_states) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank11]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank11]: return forward_call(*args, **kwargs) |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default3]:[rank11]: return column_linear( |
|
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default3]:[rank11]: return F.linear(input, weight, bias) |
|
[default3]:[rank11]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default2]:[rank10]: Traceback (most recent call last): |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default2]:[rank10]: trainer.train(dataloader) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default2]:[rank10]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default2]:[rank10]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default2]:[rank10]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default2]:[rank10]: output = model(**micro_batch) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default2]:[rank10]: sharded_logits = self.model( |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default2]:[rank10]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default2]:[rank10]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default2]:[rank10]: output = self.pp_block(**new_kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default2]:[rank10]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default2]:[rank10]: merged_states = self.gate_up_proj(hidden_states) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank10]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank10]: return forward_call(*args, **kwargs) |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default2]:[rank10]: return column_linear( |
|
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default2]:[rank10]: return F.linear(input, weight, bias) |
|
[default2]:[rank10]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.94 GiB is free. Including non-PyTorch memory, this process has 77.38 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default5]:[rank13]: Traceback (most recent call last): |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default5]:[rank13]: trainer.train(dataloader) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default5]:[rank13]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default5]:[rank13]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default5]:[rank13]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default5]:[rank13]: output = model(**micro_batch) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default5]:[rank13]: sharded_logits = self.model( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default5]:[rank13]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default5]:[rank13]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default5]:[rank13]: output = self.pp_block(**new_kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default5]:[rank13]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default5]:[rank13]: merged_states = self.gate_up_proj(hidden_states) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank13]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank13]: return forward_call(*args, **kwargs) |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default5]:[rank13]: return column_linear( |
|
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default5]:[rank13]: return F.linear(input, weight, bias) |
|
[default5]:[rank13]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default4]:[rank12]: Traceback (most recent call last): |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default4]:[rank12]: trainer.train(dataloader) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default4]:[rank12]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default4]:[rank12]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default4]:[rank12]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default4]:[rank12]: output = model(**micro_batch) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default4]:[rank12]: sharded_logits = self.model( |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default4]:[rank12]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default4]:[rank12]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default4]:[rank12]: output = self.pp_block(**new_kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default4]:[rank12]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default4]:[rank12]: merged_states = self.gate_up_proj(hidden_states) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default4]:[rank12]: return self._call_impl(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default4]:[rank12]: return forward_call(*args, **kwargs) |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default4]:[rank12]: return column_linear( |
|
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default4]:[rank12]: return F.linear(input, weight, bias) |
|
[default4]:[rank12]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default6]:[rank14]: Traceback (most recent call last): |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default6]:[rank14]: trainer.train(dataloader) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default6]:[rank14]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default6]:[rank14]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default6]:[rank14]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default6]:[rank14]: output = model(**micro_batch) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default6]:[rank14]: sharded_logits = self.model( |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default6]:[rank14]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default6]:[rank14]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default6]:[rank14]: output = self.pp_block(**new_kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default6]:[rank14]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default6]:[rank14]: merged_states = self.gate_up_proj(hidden_states) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default6]:[rank14]: return self._call_impl(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default6]:[rank14]: return forward_call(*args, **kwargs) |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default6]:[rank14]: return column_linear( |
|
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default6]:[rank14]: return F.linear(input, weight, bias) |
|
[default6]:[rank14]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default1]:[rank9]: Traceback (most recent call last): |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default1]:[rank9]: trainer.train(dataloader) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default1]:[rank9]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default1]:[rank9]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default1]:[rank9]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default1]:[rank9]: output = model(**micro_batch) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default1]:[rank9]: sharded_logits = self.model( |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default1]:[rank9]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default1]:[rank9]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default1]:[rank9]: output = self.pp_block(**new_kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default1]:[rank9]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward |
|
[default1]:[rank9]: hidden_states = self.down_proj(self.split_silu_mul(merged_states)) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward |
|
[default1]:[rank9]: return self.act(gate_states) * up_states |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank9]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank9]: return forward_call(*args, **kwargs) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/activations.py", line 149, in forward |
|
[default1]:[rank9]: return nn.functional.silu(input) |
|
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/functional.py", line 2102, in silu |
|
[default1]:[rank9]: return torch._C._nn.silu(input) |
|
[default1]:[rank9]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 103.94 MiB is free. Including non-PyTorch memory, this process has 79.21 GiB memory in use. Of the allocated memory 71.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default7]:[rank15]: Traceback (most recent call last): |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default7]:[rank15]: trainer.train(dataloader) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default7]:[rank15]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default7]:[rank15]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default7]:[rank15]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default7]:[rank15]: output = model(**micro_batch) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default7]:[rank15]: sharded_logits = self.model( |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default7]:[rank15]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default7]:[rank15]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default7]:[rank15]: output = self.pp_block(**new_kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default7]:[rank15]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default7]:[rank15]: merged_states = self.gate_up_proj(hidden_states) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank15]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank15]: return forward_call(*args, **kwargs) |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default7]:[rank15]: return column_linear( |
|
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default7]:[rank15]: return F.linear(input, weight, bias) |
|
[default7]:[rank15]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.78 GiB is free. Including non-PyTorch memory, this process has 77.54 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default7]:[rank7]: Traceback (most recent call last): |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default7]:[rank7]: trainer.train(dataloader) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default7]:[rank7]: output = model(**micro_batch) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default7]:[rank7]: sharded_logits = self.model( |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default7]:[rank7]: output = self.pp_block(**new_kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default7]:[rank7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default7]:[rank7]: merged_states = self.gate_up_proj(hidden_states) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default7]:[rank7]: return self._call_impl(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default7]:[rank7]: return forward_call(*args, **kwargs) |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default7]:[rank7]: return column_linear( |
|
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default7]:[rank7]: return F.linear(input, weight, bias) |
|
[default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.78 GiB is free. Including non-PyTorch memory, this process has 77.54 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default1]:[rank1]: Traceback (most recent call last): |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default1]:[rank1]: trainer.train(dataloader) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default1]:[rank1]: output = model(**micro_batch) |
|
[default2]:[rank2]: Traceback (most recent call last): |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default2]:[rank2]: trainer.train(dataloader) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default1]:[rank1]: sharded_logits = self.model( |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default2]:[rank2]: output = model(**micro_batch) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default2]:[rank2]: sharded_logits = self.model( |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default2]:[rank2]: output = self.pp_block(**new_kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default2]:[rank2]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default2]:[rank2]: merged_states = self.gate_up_proj(hidden_states) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default2]:[rank2]: return self._call_impl(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default2]:[rank2]: return forward_call(*args, **kwargs) |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default2]:[rank2]: return column_linear( |
|
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default2]:[rank2]: return F.linear(input, weight, bias) |
|
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.94 GiB is free. Including non-PyTorch memory, this process has 77.38 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default1]:[rank1]: output = self.pp_block(**new_kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward |
|
[default1]:[rank1]: hidden_states = self.down_proj(self.split_silu_mul(merged_states)) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward |
|
[default1]:[rank1]: return self.act(gate_states) * up_states |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default1]:[rank1]: return self._call_impl(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default1]:[rank1]: return forward_call(*args, **kwargs) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/activations.py", line 149, in forward |
|
[default1]:[rank1]: return nn.functional.silu(input) |
|
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/functional.py", line 2102, in silu |
|
[default1]:[rank1]: return torch._C._nn.silu(input) |
|
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 103.94 MiB is free. Including non-PyTorch memory, this process has 79.21 GiB memory in use. Of the allocated memory 71.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default3]:[rank3]: Traceback (most recent call last): |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default3]:[rank3]: trainer.train(dataloader) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default3]:[rank3]: output = model(**micro_batch) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default3]:[rank3]: sharded_logits = self.model( |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default3]:[rank3]: output = self.pp_block(**new_kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default3]:[rank3]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default3]:[rank3]: merged_states = self.gate_up_proj(hidden_states) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default3]:[rank3]: return self._call_impl(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default3]:[rank3]: return forward_call(*args, **kwargs) |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default3]:[rank3]: return column_linear( |
|
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default3]:[rank3]: return F.linear(input, weight, bias) |
|
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
W0702 14:17:19.214000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705879 closing signal SIGTERM |
|
W0702 14:17:19.214000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705880 closing signal SIGTERM |
|
W0702 14:17:19.215000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705881 closing signal SIGTERM |
|
W0702 14:17:19.216000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705882 closing signal SIGTERM |
|
W0702 14:17:19.216000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705883 closing signal SIGTERM |
|
W0702 14:17:19.216000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705884 closing signal SIGTERM |
|
W0702 14:17:19.217000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2705885 closing signal SIGTERM |
|
[default5]:[rank5]: Traceback (most recent call last): |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default5]:[rank5]: trainer.train(dataloader) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default5]:[rank5]: output = model(**micro_batch) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default5]:[rank5]: sharded_logits = self.model( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default5]:[rank5]: output = self.pp_block(**new_kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default5]:[rank5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default5]:[rank5]: merged_states = self.gate_up_proj(hidden_states) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default5]:[rank5]: return self._call_impl(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default5]:[rank5]: return forward_call(*args, **kwargs) |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default5]:[rank5]: return column_linear( |
|
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default5]:[rank5]: return F.linear(input, weight, bias) |
|
[default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU has a total capacity of 79.33 GiB of which 1.71 GiB is free. Including non-PyTorch memory, this process has 77.61 GiB memory in use. Of the allocated memory 69.64 GiB is allocated by PyTorch, and 666.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) |
|
[default0]:[rank8]: Traceback (most recent call last): |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module> |
|
[default0]:[rank8]: trainer.train(dataloader) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train |
|
[default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step |
|
[default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter |
|
[default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward |
|
[default0]:[rank8]: output = model(**micro_batch) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward |
|
[default0]:[rank8]: sharded_logits = self.model( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward |
|
[default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states |
|
[default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward |
|
[default0]:[rank8]: output = self.pp_block(**new_kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward |
|
[default0]:[rank8]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"] |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 171, in forward |
|
[default0]:[rank8]: merged_states = self.gate_up_proj(hidden_states) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl |
|
[default0]:[rank8]: return self._call_impl(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl |
|
[default0]:[rank8]: return forward_call(*args, **kwargs) |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward |
|
[default0]:[rank8]: return column_linear( |
|
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear |
|
[default0]:[rank8]: return F.linear(input, weight, bias) |
|
[default0]:[rank8]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU |
|
E0702 14:17:22.640000 139710490199872 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 2705878) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 |
|
Traceback (most recent call last): |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module> |
|
sys.exit(main()) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper |
|
return f(*args, **kwargs) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main |
|
run(args) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run |
|
elastic_launch( |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ |
|
return launch_agent(self._config, self._entrypoint, list(args)) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent |
|
raise ChildFailedError( |
|
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: |
|
============================================================ |
|
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED |
|
------------------------------------------------------------ |
|
Failures: |
|
<NO_OTHER_FAILURES> |
|
------------------------------------------------------------ |
|
Root Cause (first observed failure): |
|
[0]: |
|
time : 2024-07-02_14:17:19 |
|
host : ip-26-0-170-31.ec2.internal |
|
rank : 0 (local_rank: 0) |
|
exitcode : 1 (pid: 2705878) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
============================================================ |
|
srun: error: ip-26-0-170-31: task 0: Exited with exit code 1 |
|
W0702 14:17:24.185000 140577982007040 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-171-56.ec2.internal_2965410_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError. |
|
W0702 14:17:24.220000 140583648827200 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2965480 closing signal SIGTERM |
|
E0702 14:17:24.639000 140583648827200 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 2965478) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 |
|
W0702 14:17:24.645000 140583648827200 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-56.ec2.internal_2965410_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. |
|
W0702 14:17:24.672000 140583648827200 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-56.ec2.internal_2965410_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. |
|
W0702 14:17:24.696000 140583648827200 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-56.ec2.internal_2965410_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. |
|
Traceback (most recent call last): |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module> |
|
sys.exit(main()) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper |
|
return f(*args, **kwargs) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main |
|
run(args) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run |
|
elastic_launch( |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ |
|
return launch_agent(self._config, self._entrypoint, list(args)) |
|
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent |
|
raise ChildFailedError( |
|
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: |
|
============================================================ |
|
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED |
|
------------------------------------------------------------ |
|
Failures: |
|
[1]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 9 (local_rank: 1) |
|
exitcode : 1 (pid: 2965479) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[2]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 11 (local_rank: 3) |
|
exitcode : 1 (pid: 2965481) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[3]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 12 (local_rank: 4) |
|
exitcode : 1 (pid: 2965482) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[4]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 13 (local_rank: 5) |
|
exitcode : 1 (pid: 2965483) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[5]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 14 (local_rank: 6) |
|
exitcode : 1 (pid: 2965484) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
[6]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 15 (local_rank: 7) |
|
exitcode : 1 (pid: 2965485) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
------------------------------------------------------------ |
|
Root Cause (first observed failure): |
|
[0]: |
|
time : 2024-07-02_14:17:24 |
|
host : ip-26-0-171-56.ec2.internal |
|
rank : 8 (local_rank: 0) |
|
exitcode : 1 (pid: 2965478) |
|
error_file: <N/A> |
|
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html |
|
============================================================ |
|
srun: error: ip-26-0-171-56: task 1: Exited with exit code 1 |
|
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details. |
|
|