Upload llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16
Browse files
llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/bench.slurm
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=bench_cluster
|
4 |
+
#SBATCH --time=00:59:00
|
5 |
+
#SBATCH --partition=hopper-prod
|
6 |
+
#SBATCH --nodes=2
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --qos=high
|
9 |
+
#SBATCH --ntasks-per-node=1
|
10 |
+
#SBATCH --cpus-per-task=96
|
11 |
+
#SBATCH --exclusive
|
12 |
+
#SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out
|
13 |
+
#SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out
|
14 |
+
|
15 |
+
# Function to update status based on squeue output
|
16 |
+
update_status() {
|
17 |
+
job_id=$1
|
18 |
+
status_file=$2
|
19 |
+
# For unknown reasons, it doenst update status for pending. It only works for running
|
20 |
+
while true; do
|
21 |
+
job_status=$(squeue --job $job_id --noheader --format=%T)
|
22 |
+
echo "Job status: $job_status"
|
23 |
+
if [ -z "$job_status" ]; then
|
24 |
+
# Job has finished or is not found
|
25 |
+
break
|
26 |
+
elif [ "$job_status" = "RUNNING" ]; then
|
27 |
+
printf "running" > $status_file
|
28 |
+
break
|
29 |
+
fi
|
30 |
+
sleep 10
|
31 |
+
done
|
32 |
+
}
|
33 |
+
|
34 |
+
# Misc initializations.
|
35 |
+
echo "========================"
|
36 |
+
echo "START TIME: $(date)"
|
37 |
+
source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
|
38 |
+
conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
|
39 |
+
echo python3 version = $(python3 --version)
|
40 |
+
echo "========================"
|
41 |
+
|
42 |
+
# Slurm stuff
|
43 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
44 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
45 |
+
export MASTER_PORT=$((1024 + RANDOM % 64511))
|
46 |
+
|
47 |
+
export TMPDIR=/scratch
|
48 |
+
export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
|
49 |
+
export CUBLAS_WORKSPACE_CONFIG=":4096:8"
|
50 |
+
export CUDA_DEVICE_MAX_CONNECTIONS="1"
|
51 |
+
|
52 |
+
huggingface-cli login --token $HUGGINGFACE_TOKEN
|
53 |
+
|
54 |
+
|
55 |
+
NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
|
56 |
+
CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/config.yaml"
|
57 |
+
|
58 |
+
LAUNCHER="torchrun \
|
59 |
+
--nproc_per_node 8 \
|
60 |
+
--nnodes 2 \
|
61 |
+
--rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
|
62 |
+
--rdzv_backend c10d \
|
63 |
+
--max_restarts 0 \
|
64 |
+
--tee 3 \
|
65 |
+
--node_rank ${SLURM_PROCID}"
|
66 |
+
|
67 |
+
# Checkout the bench_cluster branch
|
68 |
+
cd $NANOTRON_REPO
|
69 |
+
git checkout bench_cluster
|
70 |
+
cd ..
|
71 |
+
# Get the current job ID
|
72 |
+
job_id=${SLURM_JOB_ID}
|
73 |
+
|
74 |
+
# Update status to "pending" or "running" in the background
|
75 |
+
update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt &
|
76 |
+
|
77 |
+
# Run the main command
|
78 |
+
srun -u $LAUNCHER $CMD
|
79 |
+
exit_status=$?
|
80 |
+
|
81 |
+
# Update status based on the exit status of `srun`
|
82 |
+
if [ $exit_status -eq 0 ]; then
|
83 |
+
printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
|
84 |
+
else
|
85 |
+
if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out; then
|
86 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
|
87 |
+
elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out; then
|
88 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
|
89 |
+
elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out; then
|
90 |
+
printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
|
91 |
+
else
|
92 |
+
printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
|
93 |
+
fi
|
94 |
+
fi
|
95 |
+
|
96 |
+
# Run the report script if the job completed successfully
|
97 |
+
if [ $exit_status -eq 0 ]; then
|
98 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16 --is_logs
|
99 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16 --is_profiler
|
100 |
+
fi
|
101 |
+
|
102 |
+
|
103 |
+
# Push to hub the folder using huggingface_cli
|
104 |
+
huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16 llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16 --commit-message "Upload llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16"
|
105 |
+
|
106 |
+
# Verify the upload
|
107 |
+
if [ $? -eq 0 ]; then
|
108 |
+
echo "Uploading to Huggingface Hub successful"
|
109 |
+
else
|
110 |
+
echo "Failed to upload to Huggingface Hub"
|
111 |
+
fi
|
llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
general:
|
2 |
+
project: bench_cluster
|
3 |
+
seed: 42
|
4 |
+
model:
|
5 |
+
ddp_bucket_cap_mb: 25
|
6 |
+
dtype: bfloat16
|
7 |
+
init_method:
|
8 |
+
std: 0.025
|
9 |
+
make_vocab_size_divisible_by: 1
|
10 |
+
model_config:
|
11 |
+
bos_token_id: 1
|
12 |
+
eos_token_id: 2
|
13 |
+
hidden_act: silu
|
14 |
+
hidden_size: 2048
|
15 |
+
initializer_range: 0.02
|
16 |
+
intermediate_size: 4096
|
17 |
+
is_llama_config: true
|
18 |
+
max_position_embeddings: 4096
|
19 |
+
num_attention_heads: 32
|
20 |
+
num_hidden_layers: 24
|
21 |
+
num_key_value_heads: 32
|
22 |
+
pad_token_id: null
|
23 |
+
pretraining_tp: 1
|
24 |
+
rms_norm_eps: 1.0e-05
|
25 |
+
rope_scaling: null
|
26 |
+
rope_theta: 10000.0
|
27 |
+
tie_word_embeddings: true
|
28 |
+
use_cache: true
|
29 |
+
vocab_size: 50257
|
30 |
+
optimizer:
|
31 |
+
accumulate_grad_in_fp32: true
|
32 |
+
clip_grad: 1.0
|
33 |
+
learning_rate_scheduler:
|
34 |
+
learning_rate: 0.0001
|
35 |
+
lr_decay_style: linear
|
36 |
+
lr_warmup_style: linear
|
37 |
+
lr_warmup_steps: 1
|
38 |
+
min_decay_lr: 1.0e-05
|
39 |
+
optimizer_factory:
|
40 |
+
adam_beta1: 0.9
|
41 |
+
adam_beta2: 0.95
|
42 |
+
adam_eps: 1.0e-08
|
43 |
+
name: adamW
|
44 |
+
torch_adam_is_fused: true
|
45 |
+
weight_decay: 0.01
|
46 |
+
zero_stage: 1
|
47 |
+
parallelism:
|
48 |
+
dp: 1
|
49 |
+
expert_parallel_size: 1
|
50 |
+
pp: 8
|
51 |
+
pp_engine: 1f1b
|
52 |
+
tp: 2
|
53 |
+
tp_linear_async_communication: false
|
54 |
+
tp_mode: REDUCE_SCATTER
|
55 |
+
profiler:
|
56 |
+
profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16
|
57 |
+
tokenizer:
|
58 |
+
tokenizer_max_length: null
|
59 |
+
tokenizer_name_or_path: openai-community/gpt2
|
60 |
+
tokenizer_revision: null
|
61 |
+
data_stages:
|
62 |
+
- name: Training Stage
|
63 |
+
start_training_step: 1
|
64 |
+
data:
|
65 |
+
dataset:
|
66 |
+
dataset_overwrite_cache: false
|
67 |
+
dataset_processing_num_proc_per_process: 64
|
68 |
+
hf_dataset_config_name: null
|
69 |
+
hf_dataset_or_datasets: roneneldan/TinyStories
|
70 |
+
hf_dataset_splits: train
|
71 |
+
text_column_name: text
|
72 |
+
num_loading_workers: 32
|
73 |
+
seed: 42
|
74 |
+
lighteval: null
|
75 |
+
tokens:
|
76 |
+
train_steps: 20
|
77 |
+
val_check_interval: -1
|
78 |
+
batch_accumulation_per_replica: 64
|
79 |
+
limit_test_batches: 0
|
80 |
+
limit_val_batches: 0
|
81 |
+
micro_batch_size: 16
|
82 |
+
sequence_length: 4096
|
83 |
+
logging:
|
84 |
+
iteration_step_info_interval: 1
|
85 |
+
log_level: info
|
86 |
+
log_level_replica: info
|
87 |
+
checkpoints:
|
88 |
+
checkpoint_interval: 100000
|
89 |
+
checkpoints_path: /dev/null
|
90 |
+
resume_checkpoint_path: null
|
llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/log.out
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
========================
|
2 |
+
START TIME: Tue Jul 2 18:57:49 UTC 2024
|
3 |
+
python3 version = Python 3.10.14
|
4 |
+
========================
|
5 |
+
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
|
6 |
+
Token is valid (permission: write).
|
7 |
+
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
|
8 |
+
Login successful
|
9 |
+
Already on 'bench_cluster'
|
10 |
+
M examples/config_tiny_llama.py
|
11 |
+
M examples/config_tiny_llama.yaml
|
12 |
+
M examples/train_tiny_llama.sh
|
13 |
+
M src/nanotron/models/llama.py
|
14 |
+
M src/nanotron/trainer.py
|
15 |
+
Your branch is up to date with 'origin/bench_cluster'.
|
16 |
+
Job status: RUNNING
|
17 |
+
W0702 18:57:52.390000 140570191664960 torch/distributed/run.py:757]
|
18 |
+
W0702 18:57:52.390000 140570191664960 torch/distributed/run.py:757] *****************************************
|
19 |
+
W0702 18:57:52.390000 140570191664960 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
20 |
+
W0702 18:57:52.390000 140570191664960 torch/distributed/run.py:757] *****************************************
|
21 |
+
W0702 18:57:55.127000 139912312178496 torch/distributed/run.py:757]
|
22 |
+
W0702 18:57:55.127000 139912312178496 torch/distributed/run.py:757] *****************************************
|
23 |
+
W0702 18:57:55.127000 139912312178496 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
24 |
+
W0702 18:57:55.127000 139912312178496 torch/distributed/run.py:757] *****************************************
|
25 |
+
[default0]:07/02/2024 18:58:16 [WARNING|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Vocab Size Padding] Padded vocab (size: 50257) with 1 dummy tokens (new size: 50258)
|
26 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Config:
|
27 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Config(general=GeneralArgs(project='bench_cluster',
|
28 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: run='%date_%jobid',
|
29 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: seed=42,
|
30 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: step=None,
|
31 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: consumed_train_samples=None,
|
32 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: benchmark_csv_path=None,
|
33 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: ignore_sanity_checks=True),
|
34 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: parallelism=ParallelismArgs(dp=1,
|
35 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pp=8,
|
36 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tp=2,
|
37 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f1c504d4730>,
|
38 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
|
39 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tp_linear_async_communication=False,
|
40 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: expert_parallel_size=1),
|
41 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
|
42 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: eos_token_id=2,
|
43 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hidden_act='silu',
|
44 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hidden_size=2048,
|
45 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: initializer_range=0.02,
|
46 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: intermediate_size=4096,
|
47 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: is_llama_config=True,
|
48 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: max_position_embeddings=4096,
|
49 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_attention_heads=32,
|
50 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_hidden_layers=24,
|
51 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_key_value_heads=32,
|
52 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pad_token_id=None,
|
53 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pretraining_tp=1,
|
54 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rms_norm_eps=1e-05,
|
55 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rope_scaling=None,
|
56 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rope_theta=10000.0,
|
57 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tie_word_embeddings=True,
|
58 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: use_cache=True,
|
59 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: vocab_size=50258),
|
60 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: init_method=RandomInit(std=0.025),
|
61 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: dtype=torch.bfloat16,
|
62 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: make_vocab_size_divisible_by=1,
|
63 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: ddp_bucket_cap_mb=25),
|
64 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
|
65 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tokenizer_revision=None,
|
66 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tokenizer_max_length=None),
|
67 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
|
68 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: checkpoint_interval=100000,
|
69 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: save_initial_state=False,
|
70 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: resume_checkpoint_path=None,
|
71 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: checkpoints_path_is_shared_file_system=False),
|
72 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: logging=LoggingArgs(log_level='info',
|
73 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: log_level_replica='info',
|
74 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: iteration_step_info_interval=1),
|
75 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tokens=TokensArgs(sequence_length=4096,
|
76 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: train_steps=20,
|
77 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: micro_batch_size=16,
|
78 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: batch_accumulation_per_replica=64,
|
79 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: val_check_interval=-1,
|
80 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: limit_val_batches=0,
|
81 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: limit_test_batches=0),
|
82 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
|
83 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: adam_beta1=0.9,
|
84 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: adam_beta2=0.95,
|
85 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: torch_adam_is_fused=True,
|
86 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: name='adamW'),
|
87 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: zero_stage=1,
|
88 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: weight_decay=0.01,
|
89 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: clip_grad=1.0,
|
90 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: accumulate_grad_in_fp32=True,
|
91 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
|
92 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lr_warmup_steps=1,
|
93 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lr_warmup_style='linear',
|
94 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lr_decay_style='linear',
|
95 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lr_decay_steps=19,
|
96 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lr_decay_starting_step=None,
|
97 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: min_decay_lr=1e-05)),
|
98 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: data_stages=[DatasetStageArgs(name='Training Stage',
|
99 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: start_training_step=1,
|
100 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
|
101 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hf_dataset_splits='train',
|
102 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hf_dataset_config_name=None,
|
103 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: dataset_processing_num_proc_per_process=64,
|
104 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: dataset_overwrite_cache=False,
|
105 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: text_column_name='text'),
|
106 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: seed=42,
|
107 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_loading_workers=32))],
|
108 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16')),
|
109 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: lighteval=None)
|
110 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Model Config:
|
111 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: LlamaConfig(bos_token_id=1,
|
112 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: eos_token_id=2,
|
113 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hidden_act='silu',
|
114 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: hidden_size=2048,
|
115 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: initializer_range=0.02,
|
116 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: intermediate_size=4096,
|
117 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: is_llama_config=True,
|
118 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: max_position_embeddings=4096,
|
119 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_attention_heads=32,
|
120 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_hidden_layers=24,
|
121 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: num_key_value_heads=32,
|
122 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pad_token_id=None,
|
123 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: pretraining_tp=1,
|
124 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rms_norm_eps=1e-05,
|
125 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rope_scaling=None,
|
126 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: rope_theta=10000.0,
|
127 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: tie_word_embeddings=True,
|
128 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: use_cache=True,
|
129 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: vocab_size=50258)
|
130 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Building model..
|
131 |
+
[default0]:07/02/2024 18:58:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Setting PP block ranks...
|
132 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=1|ip-26-0-170-160]: Local number of parameters: 51.5M (98.16MiB)
|
133 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=0|ip-26-0-170-160]: Local number of parameters: 83.9M (160.03MiB)
|
134 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=0|ip-26-0-170-160]: [After model building] Memory usage: 164.04MiB. Peak allocated: 166.07MiB Peak reserved: 180.00MiB
|
135 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=0|ip-26-0-170-160]: Local number of parameters: 62.9M (120.02MiB)
|
136 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=0|ip-26-0-170-160]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
137 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=0|ip-26-0-170-160]: No checkpoint path provided.
|
138 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=0|ip-26-0-170-160]: No checkpoint path provided.
|
139 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=1|ip-26-0-170-160]: [After model building] Memory usage: 98.17MiB. Peak allocated: 98.18MiB Peak reserved: 102.00MiB
|
140 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=1|ip-26-0-170-160]: No checkpoint path provided.
|
141 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=0|ip-26-0-170-160]: Local number of parameters: 51.5M (98.16MiB)
|
142 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=0|ip-26-0-170-160]: [After model building] Memory usage: 98.17MiB. Peak allocated: 98.18MiB Peak reserved: 102.00MiB
|
143 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=7|TP=0|ip-26-0-170-160]: No checkpoint path provided.
|
144 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=1|ip-26-0-170-160]: Local number of parameters: 62.9M (120.02MiB)
|
145 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=1|ip-26-0-170-160]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
146 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=0|ip-26-0-170-160]: Local number of parameters: 62.9M (120.02MiB)
|
147 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=0|ip-26-0-170-160]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
148 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=0|ip-26-0-170-160]: No checkpoint path provided.
|
149 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=4|TP=1|ip-26-0-170-160]: No checkpoint path provided.
|
150 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=1|ip-26-0-170-160]: Local number of parameters: 83.9M (160.03MiB)
|
151 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=1|ip-26-0-170-160]: [After model building] Memory usage: 164.04MiB. Peak allocated: 166.07MiB Peak reserved: 180.00MiB
|
152 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=6|TP=1|ip-26-0-170-160]: No checkpoint path provided.
|
153 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=1|ip-26-0-170-160]: Local number of parameters: 62.9M (120.02MiB)
|
154 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=1|ip-26-0-170-160]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
155 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=5|TP=1|ip-26-0-170-160]: No checkpoint path provided.
|
156 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=1|ip-26-0-165-24]: Local number of parameters: 62.9M (120.02MiB)
|
157 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=1|ip-26-0-165-24]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
158 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Total number of parameters: 1.21G (2313.02MiB)
|
159 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Local number of parameters: 135M (258.19MiB)
|
160 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [After model building] Memory usage: 262.20MiB. Peak allocated: 264.23MiB Peak reserved: 280.00MiB
|
161 |
+
[default3]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=1|ip-26-0-165-24]: No checkpoint path provided.
|
162 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: No checkpoint path provided.
|
163 |
+
[default0]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Parametrizing model parameters using StandardParametrizator
|
164 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=1|ip-26-0-165-24]: Local number of parameters: 62.9M (120.02MiB)
|
165 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=1|ip-26-0-165-24]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
166 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=0|ip-26-0-165-24]: Local number of parameters: 62.9M (120.02MiB)
|
167 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=0|ip-26-0-165-24]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
168 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=1|ip-26-0-165-24]: Local number of parameters: 83.9M (160.03MiB)
|
169 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=1|ip-26-0-165-24]: [After model building] Memory usage: 164.04MiB. Peak allocated: 166.07MiB Peak reserved: 180.00MiB
|
170 |
+
[default7]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=1|ip-26-0-165-24]: No checkpoint path provided.
|
171 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=0|ip-26-0-165-24]: Local number of parameters: 83.9M (160.03MiB)
|
172 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=0|ip-26-0-165-24]: [After model building] Memory usage: 164.04MiB. Peak allocated: 166.07MiB Peak reserved: 180.00MiB
|
173 |
+
[default6]:07/02/2024 18:58:32 [INFO|DP=0|PP=3|TP=0|ip-26-0-165-24]: No checkpoint path provided.
|
174 |
+
[default5]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=1|ip-26-0-165-24]: No checkpoint path provided.
|
175 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-165-24]: Local number of parameters: 135M (258.19MiB)
|
176 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-165-24]: [After model building] Memory usage: 262.20MiB. Peak allocated: 264.23MiB Peak reserved: 280.00MiB
|
177 |
+
[default4]:07/02/2024 18:58:32 [INFO|DP=0|PP=2|TP=0|ip-26-0-165-24]: No checkpoint path provided.
|
178 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=0|ip-26-0-165-24]: Local number of parameters: 62.9M (120.02MiB)
|
179 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=0|ip-26-0-165-24]: [After model building] Memory usage: 123.03MiB. Peak allocated: 125.06MiB Peak reserved: 138.00MiB
|
180 |
+
[default1]:07/02/2024 18:58:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-165-24]: No checkpoint path provided.
|
181 |
+
[default2]:07/02/2024 18:58:32 [INFO|DP=0|PP=1|TP=0|ip-26-0-165-24]: No checkpoint path provided.
|
182 |
+
[default0]:07/02/2024 18:58:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Optimizer Building] Using LearningRateForSP as learning rate
|
183 |
+
[default0]:07/02/2024 18:58:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [ZeRO sharding] Size of optimizer params per rank:
|
184 |
+
[default0]:07/02/2024 18:58:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [ZeRO sharding] DP Rank 0 has 135M out of 135M (100.00%) params' optimizer states
|
185 |
+
[default0]:07/02/2024 18:58:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
|
186 |
+
[default0]:07/02/2024 18:58:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Using `datasets` library
|
187 |
+
[default0]:07/02/2024 18:58:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
|
188 |
+
[default0]:07/02/2024 18:58:35 [WARNING|DP=0|PP=0|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
189 |
+
[default0]:Repo card metadata block was not found. Setting CardData to empty.
|
190 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Training Plan] There are 1 training stages
|
191 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Stage Training Stage] start from step 1
|
192 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]:
|
193 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: [Start training] datetime: 2024-07-02 18:58:36.988045 | mbs: 16 | grad_accum: 64 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
|
194 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
|
195 |
+
[default0]:07/02/2024 18:58:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-165-24]: Memory usage: 1294.97MiB. Peak allocated 1294.97MiB. Peak reserved: 1316.00MiB
|
196 |
+
[default6]:07/02/2024 18:58:37 [WARNING|DP=0|PP=7|TP=0|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
197 |
+
[default0]:07/02/2024 18:58:37 [WARNING|DP=0|PP=4|TP=0|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
198 |
+
[default7]:07/02/2024 18:58:37 [WARNING|DP=0|PP=7|TP=1|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
199 |
+
[default0]:Repo card metadata block was not found. Setting CardData to empty.
|
200 |
+
[default1]:07/02/2024 18:58:37 [WARNING|DP=0|PP=4|TP=1|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
201 |
+
[default2]:07/02/2024 18:58:37 [WARNING|DP=0|PP=5|TP=0|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
202 |
+
[default2]:Repo card metadata block was not found. Setting CardData to empty.
|
203 |
+
[default5]:07/02/2024 18:58:37 [WARNING|DP=0|PP=6|TP=1|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
204 |
+
[default5]:Repo card metadata block was not found. Setting CardData to empty.
|
205 |
+
[default7]:Repo card metadata block was not found. Setting CardData to empty.
|
206 |
+
[default1]:Repo card metadata block was not found. Setting CardData to empty.
|
207 |
+
[default4]:Repo card metadata block was not found. Setting CardData to empty.
|
208 |
+
[default2]:Repo card metadata block was not found. Setting CardData to empty.
|
209 |
+
[default6]:Repo card metadata block was not found. Setting CardData to empty.
|
210 |
+
[default6]:07/02/2024 18:58:37 [WARNING|DP=0|PP=3|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
211 |
+
[default4]:07/02/2024 18:58:37 [WARNING|DP=0|PP=2|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
212 |
+
[default5]:07/02/2024 18:58:37 [WARNING|DP=0|PP=2|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
213 |
+
[default7]:07/02/2024 18:58:37 [WARNING|DP=0|PP=3|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
214 |
+
[default2]:07/02/2024 18:58:37 [WARNING|DP=0|PP=1|TP=0|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
215 |
+
[default6]:Repo card metadata block was not found. Setting CardData to empty.
|
216 |
+
[default5]:Repo card metadata block was not found. Setting CardData to empty.
|
217 |
+
[default7]:Repo card metadata block was not found. Setting CardData to empty.
|
218 |
+
[default3]:07/02/2024 18:58:37 [WARNING|DP=0|PP=1|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
219 |
+
[default3]:Repo card metadata block was not found. Setting CardData to empty.
|
220 |
+
[default4]:07/02/2024 18:58:37 [WARNING|DP=0|PP=6|TP=0|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
221 |
+
[default4]:Repo card metadata block was not found. Setting CardData to empty.
|
222 |
+
[default3]:Repo card metadata block was not found. Setting CardData to empty.
|
223 |
+
[default3]:07/02/2024 18:58:37 [WARNING|DP=0|PP=5|TP=1|ip-26-0-170-160]: Repo card metadata block was not found. Setting CardData to empty.
|
224 |
+
[default1]:Repo card metadata block was not found. Setting CardData to empty.
|
225 |
+
[default1]:07/02/2024 18:58:37 [WARNING|DP=0|PP=0|TP=1|ip-26-0-165-24]: Repo card metadata block was not found. Setting CardData to empty.
|
226 |
+
[default1]:[rank1]: Traceback (most recent call last):
|
227 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
228 |
+
[default1]:[rank1]: trainer.train(dataloader)
|
229 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
230 |
+
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
231 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
232 |
+
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
|
233 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
|
234 |
+
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
235 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
236 |
+
[default1]:[rank1]: output = model(**micro_batch)
|
237 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
238 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
239 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
240 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
241 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
242 |
+
[default1]:[rank1]: sharded_logits = self.model(
|
243 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
244 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
245 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
246 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
247 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
248 |
+
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
249 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
250 |
+
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
251 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
252 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
253 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
254 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
255 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
256 |
+
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
|
257 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
258 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
259 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
260 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
261 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
262 |
+
[default1]:[rank1]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
263 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
264 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
265 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
266 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
267 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 563, in forward
|
268 |
+
[default1]:[rank1]: key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
|
269 |
+
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU has a total capacity of 79.33 GiB of which 51.94 MiB is free. Including non-PyTorch memory, this process has 79.26 GiB memory in use. Of the allocated memory 70.91 GiB is allocated by PyTorch, and 297.81 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
270 |
+
[default0]:[rank0]: Traceback (most recent call last):
|
271 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
272 |
+
[default0]:[rank0]: trainer.train(dataloader)
|
273 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
274 |
+
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
275 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
276 |
+
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
|
277 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
|
278 |
+
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
279 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
280 |
+
[default0]:[rank0]: output = model(**micro_batch)
|
281 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
282 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
283 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
284 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
285 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
286 |
+
[default0]:[rank0]: sharded_logits = self.model(
|
287 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
288 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
289 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
290 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
291 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
292 |
+
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
293 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
294 |
+
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
295 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
296 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
297 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
298 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
299 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
300 |
+
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
|
301 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
302 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
303 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
304 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
305 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
306 |
+
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
307 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
308 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
309 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
310 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
311 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
|
312 |
+
[default0]:[rank0]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
|
313 |
+
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU
|
314 |
+
W0702 18:59:00.741000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676602 closing signal SIGTERM
|
315 |
+
W0702 18:59:00.741000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676603 closing signal SIGTERM
|
316 |
+
W0702 18:59:00.742000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676604 closing signal SIGTERM
|
317 |
+
W0702 18:59:00.742000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676605 closing signal SIGTERM
|
318 |
+
W0702 18:59:00.743000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676606 closing signal SIGTERM
|
319 |
+
W0702 18:59:00.743000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 676607 closing signal SIGTERM
|
320 |
+
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
321 |
+
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
322 |
+
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
323 |
+
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
324 |
+
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
325 |
+
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
326 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
327 |
+
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
328 |
+
E0702 18:59:03.171000 140570191664960 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 676600) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
|
329 |
+
Traceback (most recent call last):
|
330 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
|
331 |
+
sys.exit(main())
|
332 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
|
333 |
+
return f(*args, **kwargs)
|
334 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
|
335 |
+
run(args)
|
336 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
|
337 |
+
elastic_launch(
|
338 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
|
339 |
+
return launch_agent(self._config, self._entrypoint, list(args))
|
340 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
|
341 |
+
raise ChildFailedError(
|
342 |
+
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
|
343 |
+
============================================================
|
344 |
+
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
|
345 |
+
------------------------------------------------------------
|
346 |
+
Failures:
|
347 |
+
[1]:
|
348 |
+
time : 2024-07-02_18:59:00
|
349 |
+
host : ip-26-0-165-24.ec2.internal
|
350 |
+
rank : 1 (local_rank: 1)
|
351 |
+
exitcode : 1 (pid: 676601)
|
352 |
+
error_file: <N/A>
|
353 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
354 |
+
------------------------------------------------------------
|
355 |
+
Root Cause (first observed failure):
|
356 |
+
[0]:
|
357 |
+
time : 2024-07-02_18:59:00
|
358 |
+
host : ip-26-0-165-24.ec2.internal
|
359 |
+
rank : 0 (local_rank: 0)
|
360 |
+
exitcode : 1 (pid: 676600)
|
361 |
+
error_file: <N/A>
|
362 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
363 |
+
============================================================
|
364 |
+
srun: error: ip-26-0-165-24: task 0: Exited with exit code 1
|
365 |
+
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
366 |
+
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
367 |
+
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
368 |
+
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
369 |
+
W0702 18:59:05.401000 139906645358336 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-170-160.ec2.internal_700100_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
|
370 |
+
W0702 18:59:05.756000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700172 closing signal SIGTERM
|
371 |
+
W0702 18:59:05.756000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700173 closing signal SIGTERM
|
372 |
+
W0702 18:59:05.757000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700174 closing signal SIGTERM
|
373 |
+
W0702 18:59:05.758000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700175 closing signal SIGTERM
|
374 |
+
W0702 18:59:05.759000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700176 closing signal SIGTERM
|
375 |
+
W0702 18:59:05.760000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700177 closing signal SIGTERM
|
376 |
+
W0702 18:59:05.761000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700178 closing signal SIGTERM
|
377 |
+
W0702 18:59:05.766000 139912312178496 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 700179 closing signal SIGTERM
|
378 |
+
W0702 18:59:09.385000 139912312178496 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-170-160.ec2.internal_700100_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
|
379 |
+
W0702 18:59:09.395000 139912312178496 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-170-160.ec2.internal_700100_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
|
380 |
+
Traceback (most recent call last):
|
381 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
|
382 |
+
return getattr(self._store, store_op)(*args, **kwargs)
|
383 |
+
torch.distributed.DistNetworkError: Broken pipe
|
384 |
+
|
385 |
+
The above exception was the direct cause of the following exception:
|
386 |
+
|
387 |
+
Traceback (most recent call last):
|
388 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
|
389 |
+
sys.exit(main())
|
390 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
|
391 |
+
return f(*args, **kwargs)
|
392 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
|
393 |
+
run(args)
|
394 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
|
395 |
+
elastic_launch(
|
396 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
|
397 |
+
return launch_agent(self._config, self._entrypoint, list(args))
|
398 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
|
399 |
+
result = agent.run()
|
400 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
|
401 |
+
result = f(*args, **kwargs)
|
402 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
|
403 |
+
result = self._invoke_run(role)
|
404 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
|
405 |
+
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
|
406 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
|
407 |
+
self._state_holder.sync()
|
408 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
|
409 |
+
get_response = self._backend.get_state()
|
410 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
|
411 |
+
base64_state: bytes = self._call_store("get", self._key)
|
412 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
|
413 |
+
raise RendezvousConnectionError(
|
414 |
+
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
|
415 |
+
srun: error: ip-26-0-170-160: task 1: Exited with exit code 1
|
416 |
+
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|
llama-1B/16_GPUS/dp-1_tp-2_pp-8_mbz-16/status.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
oom
|