Upload llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1
Browse files
llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/bench.slurm
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=bench_cluster
|
4 |
+
#SBATCH --time=02:00:00
|
5 |
+
#SBATCH --partition=hopper-prod
|
6 |
+
#SBATCH --nodes=1
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --qos=normal
|
9 |
+
#SBATCH --ntasks-per-node=1
|
10 |
+
#SBATCH --cpus-per-task=96
|
11 |
+
#SBATCH --exclusive
|
12 |
+
#SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out
|
13 |
+
#SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out
|
14 |
+
|
15 |
+
# Function to update status based on squeue output
|
16 |
+
update_status() {
|
17 |
+
job_id=$1
|
18 |
+
status_file=$2
|
19 |
+
# For unknown reasons, it doenst update status for pending. It only works for running
|
20 |
+
while true; do
|
21 |
+
job_status=$(squeue --job $job_id --noheader --format=%T)
|
22 |
+
echo "Job status: $job_status"
|
23 |
+
if [ -z "$job_status" ]; then
|
24 |
+
# Job has finished or is not found
|
25 |
+
break
|
26 |
+
elif [ "$job_status" = "RUNNING" ]; then
|
27 |
+
printf "running" > $status_file
|
28 |
+
break
|
29 |
+
fi
|
30 |
+
sleep 10
|
31 |
+
done
|
32 |
+
}
|
33 |
+
|
34 |
+
# Misc initializations.
|
35 |
+
echo "========================"
|
36 |
+
echo "START TIME: $(date)"
|
37 |
+
source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
|
38 |
+
conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
|
39 |
+
echo python3 version = $(python3 --version)
|
40 |
+
echo "========================"
|
41 |
+
|
42 |
+
# Slurm stuff
|
43 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
44 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
45 |
+
export MASTER_PORT=$((1024 + RANDOM % 64511))
|
46 |
+
|
47 |
+
export TMPDIR=/scratch
|
48 |
+
export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
|
49 |
+
export CUBLAS_WORKSPACE_CONFIG=":4096:8"
|
50 |
+
export CUDA_DEVICE_MAX_CONNECTIONS="1"
|
51 |
+
|
52 |
+
huggingface-cli login --token $HUGGINGFACE_TOKEN
|
53 |
+
|
54 |
+
|
55 |
+
NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
|
56 |
+
CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/config.yaml"
|
57 |
+
|
58 |
+
LAUNCHER="torchrun \
|
59 |
+
--nproc_per_node 8 \
|
60 |
+
--nnodes 1 \
|
61 |
+
--rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
|
62 |
+
--rdzv_backend c10d \
|
63 |
+
--max_restarts 0 \
|
64 |
+
--tee 3 \
|
65 |
+
--node_rank ${SLURM_PROCID}"
|
66 |
+
|
67 |
+
# Checkout the bench_cluster branch
|
68 |
+
cd $NANOTRON_REPO
|
69 |
+
git checkout bench_cluster
|
70 |
+
cd ..
|
71 |
+
# Get the current job ID
|
72 |
+
job_id=${SLURM_JOB_ID}
|
73 |
+
|
74 |
+
# Update status to "pending" or "running" in the background
|
75 |
+
update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt &
|
76 |
+
|
77 |
+
# Run the main command
|
78 |
+
srun -u $LAUNCHER $CMD
|
79 |
+
exit_status=$?
|
80 |
+
|
81 |
+
# Update status based on the exit status of `srun`
|
82 |
+
if [ $exit_status -eq 0 ]; then
|
83 |
+
printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
|
84 |
+
else
|
85 |
+
if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out; then
|
86 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
|
87 |
+
elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out; then
|
88 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
|
89 |
+
elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out; then
|
90 |
+
printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
|
91 |
+
else
|
92 |
+
printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
|
93 |
+
fi
|
94 |
+
fi
|
95 |
+
|
96 |
+
# Run the report script if the job completed successfully
|
97 |
+
if [ $exit_status -eq 0 ]; then
|
98 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1 --is_logs
|
99 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1 --is_profiler
|
100 |
+
fi
|
101 |
+
|
102 |
+
|
103 |
+
# Push to hub the folder using huggingface_cli
|
104 |
+
huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1 llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1 --commit-message "Upload llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1"
|
105 |
+
|
106 |
+
# Verify the upload
|
107 |
+
if [ $? -eq 0 ]; then
|
108 |
+
echo "Uploading to Huggingface Hub successful"
|
109 |
+
else
|
110 |
+
echo "Failed to upload to Huggingface Hub"
|
111 |
+
fi
|
llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
general:
|
2 |
+
project: bench_cluster
|
3 |
+
seed: 42
|
4 |
+
model:
|
5 |
+
ddp_bucket_cap_mb: 25
|
6 |
+
dtype: bfloat16
|
7 |
+
init_method:
|
8 |
+
std: 0.025
|
9 |
+
make_vocab_size_divisible_by: 1
|
10 |
+
model_config:
|
11 |
+
bos_token_id: 1
|
12 |
+
eos_token_id: 2
|
13 |
+
hidden_act: silu
|
14 |
+
hidden_size: 2048
|
15 |
+
initializer_range: 0.02
|
16 |
+
intermediate_size: 4096
|
17 |
+
is_llama_config: true
|
18 |
+
max_position_embeddings: 4096
|
19 |
+
num_attention_heads: 32
|
20 |
+
num_hidden_layers: 24
|
21 |
+
num_key_value_heads: 32
|
22 |
+
pad_token_id: null
|
23 |
+
pretraining_tp: 1
|
24 |
+
rms_norm_eps: 1.0e-05
|
25 |
+
rope_scaling: null
|
26 |
+
rope_theta: 10000.0
|
27 |
+
tie_word_embeddings: true
|
28 |
+
use_cache: true
|
29 |
+
vocab_size: 50257
|
30 |
+
optimizer:
|
31 |
+
accumulate_grad_in_fp32: true
|
32 |
+
clip_grad: 1.0
|
33 |
+
learning_rate_scheduler:
|
34 |
+
learning_rate: 0.0001
|
35 |
+
lr_decay_style: linear
|
36 |
+
lr_warmup_style: linear
|
37 |
+
lr_warmup_steps: 1
|
38 |
+
min_decay_lr: 1.0e-05
|
39 |
+
optimizer_factory:
|
40 |
+
adam_beta1: 0.9
|
41 |
+
adam_beta2: 0.95
|
42 |
+
adam_eps: 1.0e-08
|
43 |
+
name: adamW
|
44 |
+
torch_adam_is_fused: true
|
45 |
+
weight_decay: 0.01
|
46 |
+
zero_stage: 1
|
47 |
+
parallelism:
|
48 |
+
dp: 4
|
49 |
+
expert_parallel_size: 1
|
50 |
+
pp: 1
|
51 |
+
pp_engine: 1f1b
|
52 |
+
tp: 2
|
53 |
+
tp_linear_async_communication: false
|
54 |
+
tp_mode: REDUCE_SCATTER
|
55 |
+
profiler:
|
56 |
+
profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1
|
57 |
+
tokenizer:
|
58 |
+
tokenizer_max_length: null
|
59 |
+
tokenizer_name_or_path: openai-community/gpt2
|
60 |
+
tokenizer_revision: null
|
61 |
+
data_stages:
|
62 |
+
- name: Training Stage
|
63 |
+
start_training_step: 1
|
64 |
+
data:
|
65 |
+
dataset:
|
66 |
+
dataset_overwrite_cache: false
|
67 |
+
dataset_processing_num_proc_per_process: 64
|
68 |
+
hf_dataset_config_name: null
|
69 |
+
hf_dataset_or_datasets: roneneldan/TinyStories
|
70 |
+
hf_dataset_splits: train
|
71 |
+
text_column_name: text
|
72 |
+
num_loading_workers: 0
|
73 |
+
seed: 42
|
74 |
+
lighteval: null
|
75 |
+
tokens:
|
76 |
+
train_steps: 20
|
77 |
+
val_check_interval: -1
|
78 |
+
batch_accumulation_per_replica: 256
|
79 |
+
limit_test_batches: 0
|
80 |
+
limit_val_batches: 0
|
81 |
+
micro_batch_size: 1
|
82 |
+
sequence_length: 4096
|
83 |
+
logging:
|
84 |
+
iteration_step_info_interval: 1
|
85 |
+
log_level: info
|
86 |
+
log_level_replica: info
|
87 |
+
checkpoints:
|
88 |
+
checkpoint_interval: 100000
|
89 |
+
checkpoints_path: /dev/null
|
90 |
+
resume_checkpoint_path: null
|
llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/log.out
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
========================
|
2 |
+
START TIME: Wed Jul 3 22:51:41 UTC 2024
|
3 |
+
python3 version = Python 3.10.14
|
4 |
+
========================
|
5 |
+
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
|
6 |
+
Token is valid (permission: write).
|
7 |
+
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
|
8 |
+
Login successful
|
9 |
+
Already on 'bench_cluster'
|
10 |
+
M examples/config_tiny_llama.py
|
11 |
+
M examples/config_tiny_llama.yaml
|
12 |
+
M examples/train_tiny_llama.sh
|
13 |
+
M src/nanotron/models/llama.py
|
14 |
+
M src/nanotron/trainer.py
|
15 |
+
Your branch is up to date with 'origin/bench_cluster'.
|
16 |
+
Job status: RUNNING
|
17 |
+
W0703 22:51:44.289000 139636250072896 torch/distributed/run.py:757]
|
18 |
+
W0703 22:51:44.289000 139636250072896 torch/distributed/run.py:757] *****************************************
|
19 |
+
W0703 22:51:44.289000 139636250072896 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
20 |
+
W0703 22:51:44.289000 139636250072896 torch/distributed/run.py:757] *****************************************
|
21 |
+
[default0]:07/03/2024 22:52:00 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Vocab Size Padding] Padded vocab (size: 50257) with 1 dummy tokens (new size: 50258)
|
22 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config:
|
23 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config(general=GeneralArgs(project='bench_cluster',
|
24 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: run='%date_%jobid',
|
25 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42,
|
26 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: step=None,
|
27 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: consumed_train_samples=None,
|
28 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: benchmark_csv_path=None,
|
29 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ignore_sanity_checks=True),
|
30 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: parallelism=ParallelismArgs(dp=4,
|
31 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp=1,
|
32 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp=2,
|
33 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fc6c3bdc700>,
|
34 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
|
35 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_linear_async_communication=False,
|
36 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: expert_parallel_size=1),
|
37 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
|
38 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2,
|
39 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu',
|
40 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048,
|
41 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02,
|
42 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096,
|
43 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True,
|
44 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096,
|
45 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32,
|
46 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24,
|
47 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32,
|
48 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None,
|
49 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1,
|
50 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05,
|
51 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None,
|
52 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0,
|
53 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True,
|
54 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True,
|
55 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50258),
|
56 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: init_method=RandomInit(std=0.025),
|
57 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dtype=torch.bfloat16,
|
58 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: make_vocab_size_divisible_by=1,
|
59 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ddp_bucket_cap_mb=25),
|
60 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
|
61 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_revision=None,
|
62 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_max_length=None),
|
63 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
|
64 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoint_interval=100000,
|
65 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: save_initial_state=False,
|
66 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: resume_checkpoint_path=None,
|
67 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints_path_is_shared_file_system=False),
|
68 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: logging=LoggingArgs(log_level='info',
|
69 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: log_level_replica='info',
|
70 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration_step_info_interval=1),
|
71 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokens=TokensArgs(sequence_length=4096,
|
72 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: train_steps=20,
|
73 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: micro_batch_size=1,
|
74 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: batch_accumulation_per_replica=256,
|
75 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: val_check_interval=-1,
|
76 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_val_batches=0,
|
77 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_test_batches=0),
|
78 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
|
79 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta1=0.9,
|
80 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta2=0.95,
|
81 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: torch_adam_is_fused=True,
|
82 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: name='adamW'),
|
83 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: zero_stage=1,
|
84 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: weight_decay=0.01,
|
85 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: clip_grad=1.0,
|
86 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: accumulate_grad_in_fp32=True,
|
87 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
|
88 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_steps=1,
|
89 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_style='linear',
|
90 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_style='linear',
|
91 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_steps=19,
|
92 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_starting_step=None,
|
93 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: min_decay_lr=1e-05)),
|
94 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data_stages=[DatasetStageArgs(name='Training Stage',
|
95 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: start_training_step=1,
|
96 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
|
97 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_splits='train',
|
98 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_config_name=None,
|
99 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_processing_num_proc_per_process=64,
|
100 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_overwrite_cache=False,
|
101 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: text_column_name='text'),
|
102 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42,
|
103 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_loading_workers=0))],
|
104 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1')),
|
105 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lighteval=None)
|
106 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Model Config:
|
107 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: LlamaConfig(bos_token_id=1,
|
108 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2,
|
109 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu',
|
110 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048,
|
111 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02,
|
112 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096,
|
113 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True,
|
114 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096,
|
115 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32,
|
116 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24,
|
117 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32,
|
118 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None,
|
119 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1,
|
120 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05,
|
121 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None,
|
122 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0,
|
123 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True,
|
124 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True,
|
125 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50258)
|
126 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Building model..
|
127 |
+
[default0]:07/03/2024 22:52:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Setting PP block ranks...
|
128 |
+
[default1]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: Local number of parameters: 555M (1058.35MiB)
|
129 |
+
[default1]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: [After model building] Memory usage: 1082.37MiB. Peak allocated: 1182.56MiB Peak reserved: 1200.00MiB
|
130 |
+
[default1]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
|
131 |
+
[default0]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Total number of parameters: 1.11G (2116.70MiB)
|
132 |
+
[default0]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Local number of parameters: 555M (1058.35MiB)
|
133 |
+
[default0]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [After model building] Memory usage: 1082.37MiB. Peak allocated: 1182.56MiB Peak reserved: 1200.00MiB
|
134 |
+
[default0]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
|
135 |
+
[default0]:07/03/2024 22:52:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Parametrizing model parameters using StandardParametrizator
|
136 |
+
[default3]:07/03/2024 22:52:10 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
|
137 |
+
[default2]:07/03/2024 22:52:10 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
|
138 |
+
[default7]:07/03/2024 22:52:10 [INFO|DP=3|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
|
139 |
+
[default6]:07/03/2024 22:52:10 [INFO|DP=3|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
|
140 |
+
[default4]:07/03/2024 22:52:10 [INFO|DP=2|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided.
|
141 |
+
[default5]:07/03/2024 22:52:10 [INFO|DP=2|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided.
|
142 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Optimizer Building] Using LearningRateForSP as learning rate
|
143 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] Size of optimizer params per rank:
|
144 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 0 has 139M out of 555M (25.00%) params' optimizer states
|
145 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 1 has 139M out of 555M (25.00%) params' optimizer states
|
146 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 2 has 139M out of 555M (25.00%) params' optimizer states
|
147 |
+
[default0]:07/03/2024 22:52:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 3 has 139M out of 555M (25.00%) params' optimizer states
|
148 |
+
[default0]:07/03/2024 22:52:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
|
149 |
+
[default0]:07/03/2024 22:52:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Using `datasets` library
|
150 |
+
[default0]:07/03/2024 22:52:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
|
151 |
+
[default0]:07/03/2024 22:52:16 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
152 |
+
[default0]:Repo card metadata block was not found. Setting CardData to empty.
|
153 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] There are 1 training stages
|
154 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Stage Training Stage] start from step 1
|
155 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]:
|
156 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Start training] datetime: 2024-07-03 22:52:17.276501 | mbs: 1 | grad_accum: 256 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
|
157 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
|
158 |
+
[default0]:07/03/2024 22:52:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 3729.08MiB. Peak allocated 3729.08MiB. Peak reserved: 3848.00MiB
|
159 |
+
[default1]:07/03/2024 22:52:17 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
160 |
+
[default2]:Repo card metadata block was not found. Setting CardData to empty.
|
161 |
+
[default6]:07/03/2024 22:52:17 [WARNING|DP=3|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
162 |
+
[default7]:07/03/2024 22:52:17 [WARNING|DP=3|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
163 |
+
[default2]:07/03/2024 22:52:17 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
164 |
+
[default6]:Repo card metadata block was not found. Setting CardData to empty.
|
165 |
+
[default4]:Repo card metadata block was not found. Setting CardData to empty.
|
166 |
+
[default1]:Repo card metadata block was not found. Setting CardData to empty.
|
167 |
+
[default4]:07/03/2024 22:52:17 [WARNING|DP=2|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
168 |
+
[default5]:07/03/2024 22:52:17 [WARNING|DP=2|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
169 |
+
[default5]:Repo card metadata block was not found. Setting CardData to empty.
|
170 |
+
[default7]:Repo card metadata block was not found. Setting CardData to empty.
|
171 |
+
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
172 |
+
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
173 |
+
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
174 |
+
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
175 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
176 |
+
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
177 |
+
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
178 |
+
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
179 |
+
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
180 |
+
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
181 |
+
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
182 |
+
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
183 |
+
[default3]:07/03/2024 22:52:35 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty.
|
184 |
+
[default3]:Repo card metadata block was not found. Setting CardData to empty.
|
185 |
+
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
186 |
+
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
187 |
+
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
188 |
+
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
189 |
+
[default0]:07/03/2024 22:52:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 3805.27MiB. Peak allocated 8461.15MiB. Peak reserved: 9066.00MiB
|
190 |
+
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
191 |
+
[default0]: warnings.warn(
|
192 |
+
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
193 |
+
[default1]: warnings.warn(
|
194 |
+
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
195 |
+
[default5]: warnings.warn(
|
196 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
197 |
+
[default4]: warnings.warn(
|
198 |
+
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
199 |
+
[default6]: warnings.warn(
|
200 |
+
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
201 |
+
[default7]: warnings.warn(
|
202 |
+
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
203 |
+
[default2]: warnings.warn(
|
204 |
+
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
205 |
+
[default3]: warnings.warn(
|
206 |
+
[default0]:07/03/2024 22:53:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 56.4K | tokens_per_sec: 74.3K | tokens_per_sec_per_gpu: 9.29K | global_batch_size: 1.02K | lm_loss: 11.5 | lr: 0.0001 | model_tflops_per_gpu: 84.3 | hardware_tflops_per_gpu: 84.3 | grad_norm: 26.4 | cuda_memory_allocated: 5.1G | cuda_max_memory_reserved: 11.5G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
|
207 |
+
[default0]:07/03/2024 22:53:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.69MiB. Peak allocated 7244.99MiB. Peak reserved: 10924.00MiB
|
208 |
+
[default0]:07/03/2024 22:53:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.82MiB. Peak allocated 9519.70MiB. Peak reserved: 10924.00MiB
|
209 |
+
[default0]:07/03/2024 22:53:47 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 33.8K | tokens_per_sec: 124K | tokens_per_sec_per_gpu: 15.5K | global_batch_size: 1.02K | lm_loss: 11.5 | lr: 9.53e-05 | model_tflops_per_gpu: 141 | hardware_tflops_per_gpu: 141 | grad_norm: 26.6 | cuda_memory_allocated: 5.1G | cuda_max_memory_reserved: 11.5G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
|
210 |
+
[default0]:07/03/2024 22:53:47 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.69MiB. Peak allocated 7245.11MiB. Peak reserved: 10924.00MiB
|
211 |
+
[default0]:07/03/2024 22:54:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.82MiB. Peak allocated 9519.70MiB. Peak reserved: 10924.00MiB
|
212 |
+
[default0]:07/03/2024 22:54:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 39.5K | tokens_per_sec: 106K | tokens_per_sec_per_gpu: 13.3K | global_batch_size: 1.02K | lm_loss: 11.5 | lr: 9.05e-05 | model_tflops_per_gpu: 121 | hardware_tflops_per_gpu: 121 | grad_norm: 262 | cuda_memory_allocated: 5.1G | cuda_max_memory_reserved: 11.5G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
|
213 |
+
[default0]:07/03/2024 22:54:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.69MiB. Peak allocated 7245.11MiB. Peak reserved: 10924.00MiB
|
214 |
+
[default0]:STAGE:2024-07-03 22:54:27 347101:347101 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
|
215 |
+
[default0]:07/03/2024 22:55:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.82MiB. Peak allocated 9519.70MiB. Peak reserved: 10924.00MiB
|
216 |
+
[default0]:07/03/2024 22:55:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 52.6K | tokens_per_sec: 79.7K | tokens_per_sec_per_gpu: 9.97K | global_batch_size: 1.02K | lm_loss: 14.6 | lr: 8.58e-05 | model_tflops_per_gpu: 90.4 | hardware_tflops_per_gpu: 90.4 | grad_norm: 29.1 | cuda_memory_allocated: 5.1G | cuda_max_memory_reserved: 11.5G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.5G | hd_free_memory_tb: 246G
|
217 |
+
[default0]:07/03/2024 22:55:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.69MiB. Peak allocated 7245.11MiB. Peak reserved: 10924.00MiB
|
218 |
+
[default0]:07/03/2024 22:56:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 52.9K | tokens_per_sec: 79.3K | tokens_per_sec_per_gpu: 9.91K | global_batch_size: 1.02K | lm_loss: 10.8 | lr: 8.11e-05 | model_tflops_per_gpu: 89.9 | hardware_tflops_per_gpu: 89.9 | grad_norm: 31.2
|
219 |
+
[default0]:07/03/2024 22:56:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 4863.69MiB. Peak allocated 9519.70MiB. Peak reserved: 10924.00MiB
|
220 |
+
[default0]:07/03/2024 22:57:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 53.3K | tokens_per_sec: 78.7K | tokens_per_sec_per_gpu: 9.83K | global_batch_size: 1.02K | lm_loss: 10.6 | lr: 7.63e-05 | model_tflops_per_gpu: 89.2 | hardware_tflops_per_gpu: 89.2 | grad_norm: 27
|
221 |
+
[default0]:STAGE:2024-07-03 22:59:28 347101:347101 ActivityProfilerController.cpp:320] Completed Stage: Collection
|
222 |
+
[default0]:STAGE:2024-07-03 22:59:43 347101:347101 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
|
223 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=305728, OpType=_REDUCE_SCATTER_BASE, NumelIn=8388608, NumelOut=4194304, Timeout(ms)=600000) ran for 600041 milliseconds before timing out.
|
224 |
+
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600084 milliseconds before timing out.
|
225 |
+
[default3]:[rank3]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356672, OpType=COALESCED, NumelIn=2048, NumelOut=2048, Timeout(ms)=600000) ran for 600048 milliseconds before timing out.
|
226 |
+
[default3]:[rank3]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600077 milliseconds before timing out.
|
227 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600055 milliseconds before timing out.
|
228 |
+
[default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356589, OpType=_ALLGATHER_BASE, NumelIn=4194304, NumelOut=8388608, Timeout(ms)=600000) ran for 600643 milliseconds before timing out.
|
229 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600019 milliseconds before timing out.
|
230 |
+
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600096 milliseconds before timing out.
|
231 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356667, OpType=_ALLGATHER_BASE, NumelIn=4194304, NumelOut=8388608, Timeout(ms)=600000) ran for 600260 milliseconds before timing out.
|
232 |
+
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=165, OpType=ALLREDUCE, NumelIn=554881024, NumelOut=554881024, Timeout(ms)=600000) ran for 600086 milliseconds before timing out.
|
233 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356617, OpType=_ALLGATHER_BASE, NumelIn=4194304, NumelOut=8388608, Timeout(ms)=600000) ran for 600337 milliseconds before timing out.
|
234 |
+
[default7]:[rank7]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356671, OpType=_ALLGATHER_BASE, NumelIn=4194304, NumelOut=8388608, Timeout(ms)=600000) ran for 600322 milliseconds before timing out.
|
235 |
+
[default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=356619, OpType=_ALLGATHER_BASE, NumelIn=4194304, NumelOut=8388608, Timeout(ms)=600000) ran for 600376 milliseconds before timing out.
|
236 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:1537] [PG 2 Rank 1] Timeout at NCCL work: 305728, last enqueued NCCL work: 305848, last completed NCCL work: 305727.
|
237 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:577] [Rank 1] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
|
238 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:583] [Rank 1] To avoid data inconsistency, we are taking the entire process down.
|
239 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:1414] [PG 2 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=305728, OpType=_REDUCE_SCATTER_BASE, NumelIn=8388608, NumelOut=4194304, Timeout(ms)=600000) ran for 600041 milliseconds before timing out.
|
240 |
+
[default1]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
241 |
+
[default1]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f841ba9b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
242 |
+
[default1]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f841cd74c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
243 |
+
[default1]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f841cd79a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
244 |
+
[default1]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f841cd7adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
245 |
+
[default1]:frame #4: <unknown function> + 0xd3e95 (0x7f8468813e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
246 |
+
[default1]:frame #5: <unknown function> + 0x8609 (0x7f846d85a609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
247 |
+
[default1]:frame #6: clone + 0x43 (0x7f846d625353 in /lib/x86_64-linux-gnu/libc.so.6)
|
248 |
+
[default1]:
|
249 |
+
[default1]:terminate called after throwing an instance of 'c10::DistBackendError'
|
250 |
+
[default1]: what(): [PG 2 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=305728, OpType=_REDUCE_SCATTER_BASE, NumelIn=8388608, NumelOut=4194304, Timeout(ms)=600000) ran for 600041 milliseconds before timing out.
|
251 |
+
[default1]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
252 |
+
[default1]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f841ba9b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
253 |
+
[default1]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f841cd74c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
254 |
+
[default1]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f841cd79a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
255 |
+
[default1]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f841cd7adcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
256 |
+
[default1]:frame #4: <unknown function> + 0xd3e95 (0x7f8468813e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
257 |
+
[default1]:frame #5: <unknown function> + 0x8609 (0x7f846d85a609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
258 |
+
[default1]:frame #6: clone + 0x43 (0x7f846d625353 in /lib/x86_64-linux-gnu/libc.so.6)
|
259 |
+
[default1]:
|
260 |
+
[default1]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
|
261 |
+
[default1]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f841ba9b897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
262 |
+
[default1]:frame #1: <unknown function> + 0xe32119 (0x7f841c9fe119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
263 |
+
[default1]:frame #2: <unknown function> + 0xd3e95 (0x7f8468813e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
264 |
+
[default1]:frame #3: <unknown function> + 0x8609 (0x7f846d85a609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
265 |
+
[default1]:frame #4: clone + 0x43 (0x7f846d625353 in /lib/x86_64-linux-gnu/libc.so.6)
|
266 |
+
[default1]:
|
267 |
+
W0703 23:08:10.250000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347101 closing signal SIGTERM
|
268 |
+
W0703 23:08:10.250000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347103 closing signal SIGTERM
|
269 |
+
W0703 23:08:10.251000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347104 closing signal SIGTERM
|
270 |
+
W0703 23:08:10.251000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347105 closing signal SIGTERM
|
271 |
+
W0703 23:08:10.251000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347106 closing signal SIGTERM
|
272 |
+
W0703 23:08:10.254000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347107 closing signal SIGTERM
|
273 |
+
W0703 23:08:10.254000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 347108 closing signal SIGTERM
|
274 |
+
E0703 23:08:16.149000 139636250072896 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 1 (pid: 347102) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
|
275 |
+
Traceback (most recent call last):
|
276 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
|
277 |
+
sys.exit(main())
|
278 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
|
279 |
+
return f(*args, **kwargs)
|
280 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
|
281 |
+
run(args)
|
282 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
|
283 |
+
elastic_launch(
|
284 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
|
285 |
+
return launch_agent(self._config, self._entrypoint, list(args))
|
286 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
|
287 |
+
raise ChildFailedError(
|
288 |
+
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
|
289 |
+
============================================================
|
290 |
+
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
|
291 |
+
------------------------------------------------------------
|
292 |
+
Failures:
|
293 |
+
<NO_OTHER_FAILURES>
|
294 |
+
------------------------------------------------------------
|
295 |
+
Root Cause (first observed failure):
|
296 |
+
[0]:
|
297 |
+
time : 2024-07-03_23:08:10
|
298 |
+
host : ip-26-0-160-225.ec2.internal
|
299 |
+
rank : 1 (local_rank: 1)
|
300 |
+
exitcode : -6 (pid: 347102)
|
301 |
+
error_file: <N/A>
|
302 |
+
traceback : Signal 6 (SIGABRT) received by PID 347102
|
303 |
+
============================================================
|
304 |
+
srun: error: ip-26-0-160-225: task 0: Exited with exit code 1
|
305 |
+
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|
llama-1B/8_GPUS/dp-4_tp-2_pp-1_mbz-1/status.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
timeout
|