Upload llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1
Browse files
llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/bench.slurm
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=bench_cluster
|
4 |
+
#SBATCH --time=02:00:00
|
5 |
+
#SBATCH --partition=hopper-prod
|
6 |
+
#SBATCH --nodes=1
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --qos=normal
|
9 |
+
#SBATCH --ntasks-per-node=1
|
10 |
+
#SBATCH --cpus-per-task=96
|
11 |
+
#SBATCH --exclusive
|
12 |
+
#SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out
|
13 |
+
#SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out
|
14 |
+
|
15 |
+
# Function to update status based on squeue output
|
16 |
+
update_status() {
|
17 |
+
job_id=$1
|
18 |
+
status_file=$2
|
19 |
+
# For unknown reasons, it doenst update status for pending. It only works for running
|
20 |
+
while true; do
|
21 |
+
job_status=$(squeue --job $job_id --noheader --format=%T)
|
22 |
+
echo "Job status: $job_status"
|
23 |
+
if [ -z "$job_status" ]; then
|
24 |
+
# Job has finished or is not found
|
25 |
+
break
|
26 |
+
elif [ "$job_status" = "RUNNING" ]; then
|
27 |
+
printf "running" > $status_file
|
28 |
+
break
|
29 |
+
fi
|
30 |
+
sleep 10
|
31 |
+
done
|
32 |
+
}
|
33 |
+
|
34 |
+
# Misc initializations.
|
35 |
+
echo "========================"
|
36 |
+
echo "START TIME: $(date)"
|
37 |
+
source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
|
38 |
+
conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
|
39 |
+
echo python3 version = $(python3 --version)
|
40 |
+
echo "========================"
|
41 |
+
|
42 |
+
# Slurm stuff
|
43 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
44 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
45 |
+
export MASTER_PORT=$((1024 + RANDOM % 64511))
|
46 |
+
|
47 |
+
export TMPDIR=/scratch
|
48 |
+
export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
|
49 |
+
export CUBLAS_WORKSPACE_CONFIG=":4096:8"
|
50 |
+
export CUDA_DEVICE_MAX_CONNECTIONS="1"
|
51 |
+
|
52 |
+
huggingface-cli login --token $HUGGINGFACE_TOKEN
|
53 |
+
|
54 |
+
|
55 |
+
NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
|
56 |
+
CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/config.yaml"
|
57 |
+
|
58 |
+
LAUNCHER="torchrun \
|
59 |
+
--nproc_per_node 8 \
|
60 |
+
--nnodes 1 \
|
61 |
+
--rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
|
62 |
+
--rdzv_backend c10d \
|
63 |
+
--max_restarts 0 \
|
64 |
+
--tee 3 \
|
65 |
+
--node_rank ${SLURM_PROCID}"
|
66 |
+
|
67 |
+
# Checkout the bench_cluster branch
|
68 |
+
cd $NANOTRON_REPO
|
69 |
+
git checkout bench_cluster
|
70 |
+
cd ..
|
71 |
+
# Get the current job ID
|
72 |
+
job_id=${SLURM_JOB_ID}
|
73 |
+
|
74 |
+
# Update status to "pending" or "running" in the background
|
75 |
+
update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt &
|
76 |
+
|
77 |
+
# Run the main command
|
78 |
+
srun -u $LAUNCHER $CMD
|
79 |
+
exit_status=$?
|
80 |
+
|
81 |
+
# Update status based on the exit status of `srun`
|
82 |
+
if [ $exit_status -eq 0 ]; then
|
83 |
+
printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
|
84 |
+
else
|
85 |
+
if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out; then
|
86 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
|
87 |
+
elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out; then
|
88 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
|
89 |
+
elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out; then
|
90 |
+
printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
|
91 |
+
else
|
92 |
+
printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
|
93 |
+
fi
|
94 |
+
fi
|
95 |
+
|
96 |
+
# Run the report script if the job completed successfully
|
97 |
+
if [ $exit_status -eq 0 ]; then
|
98 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1 --is_logs
|
99 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1 --is_profiler
|
100 |
+
fi
|
101 |
+
|
102 |
+
|
103 |
+
# Push to hub the folder using huggingface_cli
|
104 |
+
huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1 llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1 --commit-message "Upload llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1"
|
105 |
+
|
106 |
+
# Verify the upload
|
107 |
+
if [ $? -eq 0 ]; then
|
108 |
+
echo "Uploading to Huggingface Hub successful"
|
109 |
+
else
|
110 |
+
echo "Failed to upload to Huggingface Hub"
|
111 |
+
fi
|
llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
general:
|
2 |
+
project: bench_cluster
|
3 |
+
seed: 42
|
4 |
+
model:
|
5 |
+
ddp_bucket_cap_mb: 25
|
6 |
+
dtype: bfloat16
|
7 |
+
init_method:
|
8 |
+
std: 0.025
|
9 |
+
make_vocab_size_divisible_by: 1
|
10 |
+
model_config:
|
11 |
+
bos_token_id: 1
|
12 |
+
eos_token_id: 2
|
13 |
+
hidden_act: silu
|
14 |
+
hidden_size: 2048
|
15 |
+
initializer_range: 0.02
|
16 |
+
intermediate_size: 4096
|
17 |
+
is_llama_config: true
|
18 |
+
max_position_embeddings: 4096
|
19 |
+
num_attention_heads: 32
|
20 |
+
num_hidden_layers: 24
|
21 |
+
num_key_value_heads: 32
|
22 |
+
pad_token_id: null
|
23 |
+
pretraining_tp: 1
|
24 |
+
rms_norm_eps: 1.0e-05
|
25 |
+
rope_scaling: null
|
26 |
+
rope_theta: 10000.0
|
27 |
+
tie_word_embeddings: true
|
28 |
+
use_cache: true
|
29 |
+
vocab_size: 50257
|
30 |
+
optimizer:
|
31 |
+
accumulate_grad_in_fp32: true
|
32 |
+
clip_grad: 1.0
|
33 |
+
learning_rate_scheduler:
|
34 |
+
learning_rate: 0.0001
|
35 |
+
lr_decay_style: linear
|
36 |
+
lr_warmup_style: linear
|
37 |
+
lr_warmup_steps: 1
|
38 |
+
min_decay_lr: 1.0e-05
|
39 |
+
optimizer_factory:
|
40 |
+
adam_beta1: 0.9
|
41 |
+
adam_beta2: 0.95
|
42 |
+
adam_eps: 1.0e-08
|
43 |
+
name: adamW
|
44 |
+
torch_adam_is_fused: true
|
45 |
+
weight_decay: 0.01
|
46 |
+
zero_stage: 1
|
47 |
+
parallelism:
|
48 |
+
dp: 2
|
49 |
+
expert_parallel_size: 1
|
50 |
+
pp: 2
|
51 |
+
pp_engine: 1f1b
|
52 |
+
tp: 2
|
53 |
+
tp_linear_async_communication: false
|
54 |
+
tp_mode: REDUCE_SCATTER
|
55 |
+
profiler:
|
56 |
+
profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1
|
57 |
+
tokenizer:
|
58 |
+
tokenizer_max_length: null
|
59 |
+
tokenizer_name_or_path: openai-community/gpt2
|
60 |
+
tokenizer_revision: null
|
61 |
+
data_stages:
|
62 |
+
- name: Training Stage
|
63 |
+
start_training_step: 1
|
64 |
+
data:
|
65 |
+
dataset:
|
66 |
+
dataset_overwrite_cache: false
|
67 |
+
dataset_processing_num_proc_per_process: 64
|
68 |
+
hf_dataset_config_name: null
|
69 |
+
hf_dataset_or_datasets: roneneldan/TinyStories
|
70 |
+
hf_dataset_splits: train
|
71 |
+
text_column_name: text
|
72 |
+
num_loading_workers: 0
|
73 |
+
seed: 42
|
74 |
+
lighteval: null
|
75 |
+
tokens:
|
76 |
+
train_steps: 20
|
77 |
+
val_check_interval: -1
|
78 |
+
batch_accumulation_per_replica: 512
|
79 |
+
limit_test_batches: 0
|
80 |
+
limit_val_batches: 0
|
81 |
+
micro_batch_size: 1
|
82 |
+
sequence_length: 4096
|
83 |
+
logging:
|
84 |
+
iteration_step_info_interval: 1
|
85 |
+
log_level: info
|
86 |
+
log_level_replica: info
|
87 |
+
checkpoints:
|
88 |
+
checkpoint_interval: 100000
|
89 |
+
checkpoints_path: /dev/null
|
90 |
+
resume_checkpoint_path: null
|
llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/log.out
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
========================
|
2 |
+
START TIME: Thu Jul 4 02:30:27 UTC 2024
|
3 |
+
python3 version = Python 3.10.14
|
4 |
+
========================
|
5 |
+
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
|
6 |
+
Token is valid (permission: write).
|
7 |
+
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
|
8 |
+
Login successful
|
9 |
+
Already on 'bench_cluster'
|
10 |
+
M examples/config_tiny_llama.py
|
11 |
+
M examples/config_tiny_llama.yaml
|
12 |
+
M examples/train_tiny_llama.sh
|
13 |
+
M src/nanotron/models/llama.py
|
14 |
+
M src/nanotron/trainer.py
|
15 |
+
Your branch is up to date with 'origin/bench_cluster'.
|
16 |
+
Job status: RUNNING
|
17 |
+
W0704 02:30:30.237000 139799591991104 torch/distributed/run.py:757]
|
18 |
+
W0704 02:30:30.237000 139799591991104 torch/distributed/run.py:757] *****************************************
|
19 |
+
W0704 02:30:30.237000 139799591991104 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
20 |
+
W0704 02:30:30.237000 139799591991104 torch/distributed/run.py:757] *****************************************
|
21 |
+
[default0]:07/04/2024 02:30:46 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Vocab Size Padding] Padded vocab (size: 50257) with 1 dummy tokens (new size: 50258)
|
22 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config:
|
23 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config(general=GeneralArgs(project='bench_cluster',
|
24 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: run='%date_%jobid',
|
25 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
|
26 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: step=None,
|
27 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: consumed_train_samples=None,
|
28 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: benchmark_csv_path=None,
|
29 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ignore_sanity_checks=True),
|
30 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: parallelism=ParallelismArgs(dp=2,
|
31 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp=2,
|
32 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp=2,
|
33 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f9b1f424730>,
|
34 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
|
35 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_linear_async_communication=False,
|
36 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: expert_parallel_size=1),
|
37 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
|
38 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
|
39 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
|
40 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
|
41 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
|
42 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
|
43 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
|
44 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
|
45 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
|
46 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
|
47 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
|
48 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
|
49 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
|
50 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
|
51 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
|
52 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
|
53 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
|
54 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
|
55 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50258),
|
56 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: init_method=RandomInit(std=0.025),
|
57 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dtype=torch.bfloat16,
|
58 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: make_vocab_size_divisible_by=1,
|
59 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ddp_bucket_cap_mb=25),
|
60 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
|
61 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_revision=None,
|
62 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_max_length=None),
|
63 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
|
64 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoint_interval=100000,
|
65 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: save_initial_state=False,
|
66 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: resume_checkpoint_path=None,
|
67 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints_path_is_shared_file_system=False),
|
68 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: logging=LoggingArgs(log_level='info',
|
69 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: log_level_replica='info',
|
70 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: iteration_step_info_interval=1),
|
71 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokens=TokensArgs(sequence_length=4096,
|
72 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: train_steps=20,
|
73 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: micro_batch_size=1,
|
74 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: batch_accumulation_per_replica=512,
|
75 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: val_check_interval=-1,
|
76 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_val_batches=0,
|
77 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_test_batches=0),
|
78 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
|
79 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta1=0.9,
|
80 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta2=0.95,
|
81 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: torch_adam_is_fused=True,
|
82 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: name='adamW'),
|
83 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: zero_stage=1,
|
84 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: weight_decay=0.01,
|
85 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: clip_grad=1.0,
|
86 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: accumulate_grad_in_fp32=True,
|
87 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
|
88 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_steps=1,
|
89 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_style='linear',
|
90 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_style='linear',
|
91 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_steps=19,
|
92 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_starting_step=None,
|
93 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: min_decay_lr=1e-05)),
|
94 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data_stages=[DatasetStageArgs(name='Training Stage',
|
95 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: start_training_step=1,
|
96 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
|
97 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_splits='train',
|
98 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_config_name=None,
|
99 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_processing_num_proc_per_process=64,
|
100 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_overwrite_cache=False,
|
101 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: text_column_name='text'),
|
102 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
|
103 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_loading_workers=0))],
|
104 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1')),
|
105 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lighteval=None)
|
106 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Model Config:
|
107 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: LlamaConfig(bos_token_id=1,
|
108 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
|
109 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
|
110 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
|
111 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
|
112 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
|
113 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
|
114 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
|
115 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
|
116 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
|
117 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
|
118 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
|
119 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
|
120 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
|
121 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
|
122 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
|
123 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
|
124 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
|
125 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50258)
|
126 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Building model..
|
127 |
+
[default0]:07/04/2024 02:30:46 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Setting PP block ranks...
|
128 |
+
[default6]:07/04/2024 02:30:58 [INFO|DP=1|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
129 |
+
[default0]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Total number of parameters: 1.21G (2313.02MiB)
|
130 |
+
[default0]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Local number of parameters: 345M (658.27MiB)
|
131 |
+
[default0]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 672.29MiB. Peak allocated: 674.32MiB Peak reserved: 690.00MiB
|
132 |
+
[default4]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: Local number of parameters: 261M (498.24MiB)
|
133 |
+
[default4]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 508.26MiB. Peak allocated: 510.29MiB Peak reserved: 526.00MiB
|
134 |
+
[default4]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
135 |
+
[default0]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
136 |
+
[default0]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Parametrizing model parameters using StandardParametrizator
|
137 |
+
[default1]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: Local number of parameters: 345M (658.27MiB)
|
138 |
+
[default1]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: [After model building] Memory usage: 672.29MiB. Peak allocated: 674.32MiB Peak reserved: 690.00MiB
|
139 |
+
[default7]:07/04/2024 02:30:58 [INFO|DP=1|PP=1|TP=1|ip-26-0-171-88]: No checkpoint path provided.
|
140 |
+
[default3]:07/04/2024 02:30:58 [INFO|DP=1|PP=0|TP=1|ip-26-0-171-88]: No checkpoint path provided.
|
141 |
+
[default1]:07/04/2024 02:30:58 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-88]: No checkpoint path provided.
|
142 |
+
[default5]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: Local number of parameters: 261M (498.24MiB)
|
143 |
+
[default5]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: [After model building] Memory usage: 508.26MiB. Peak allocated: 510.29MiB Peak reserved: 526.00MiB
|
144 |
+
[default5]:07/04/2024 02:30:58 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: No checkpoint path provided.
|
145 |
+
[default2]:07/04/2024 02:30:58 [INFO|DP=1|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
146 |
+
[default0]:07/04/2024 02:31:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Optimizer Building] Using LearningRateForSP as learning rate
|
147 |
+
[default0]:07/04/2024 02:31:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] Size of optimizer params per rank:
|
148 |
+
[default0]:07/04/2024 02:31:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 0 has 173M out of 345M (50.00%) params' optimizer states
|
149 |
+
[default0]:07/04/2024 02:31:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 1 has 173M out of 345M (50.00%) params' optimizer states
|
150 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
|
151 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Using `datasets` library
|
152 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
|
153 |
+
[default0]:07/04/2024 02:31:02 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
154 |
+
[default0]:Repo card metadata block was not found. Setting CardData to empty.
|
155 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] There are 1 training stages
|
156 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Stage Training Stage] start from step 1
|
157 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]:
|
158 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Start training] datetime: 2024-07-04 02:31:02.922756 | mbs: 1 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
|
159 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
|
160 |
+
[default0]:07/04/2024 02:31:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 2647.09MiB. Peak allocated 2647.09MiB. Peak reserved: 2668.00MiB
|
161 |
+
[default2]:Repo card metadata block was not found. Setting CardData to empty.
|
162 |
+
[default2]:07/04/2024 02:31:03 [WARNING|DP=1|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
163 |
+
[default4]:07/04/2024 02:31:03 [WARNING|DP=0|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
164 |
+
[default6]:07/04/2024 02:31:03 [WARNING|DP=1|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
165 |
+
[default1]:Repo card metadata block was not found. Setting CardData to empty.
|
166 |
+
[default3]:Repo card metadata block was not found. Setting CardData to empty.
|
167 |
+
[default4]:Repo card metadata block was not found. Setting CardData to empty.
|
168 |
+
[default6]:Repo card metadata block was not found. Setting CardData to empty.
|
169 |
+
[default7]:Repo card metadata block was not found. Setting CardData to empty.
|
170 |
+
[default3]:07/04/2024 02:31:03 [WARNING|DP=1|PP=0|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
171 |
+
[default1]:07/04/2024 02:31:03 [WARNING|DP=0|PP=0|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
172 |
+
[default5]:07/04/2024 02:31:03 [WARNING|DP=0|PP=1|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
173 |
+
[default7]:07/04/2024 02:31:03 [WARNING|DP=1|PP=1|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
174 |
+
[default5]:Repo card metadata block was not found. Setting CardData to empty.
|
175 |
+
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
176 |
+
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
177 |
+
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
178 |
+
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
179 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
180 |
+
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
181 |
+
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
182 |
+
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
183 |
+
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
184 |
+
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
185 |
+
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
186 |
+
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
187 |
+
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
188 |
+
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
189 |
+
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
190 |
+
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
191 |
+
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
192 |
+
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
193 |
+
[default2]: warnings.warn(
|
194 |
+
[default3]: warnings.warn(
|
195 |
+
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
196 |
+
[default7]: warnings.warn(
|
197 |
+
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
198 |
+
[default6]: warnings.warn(
|
199 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
200 |
+
[default4]: warnings.warn(
|
201 |
+
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
202 |
+
[default0]: warnings.warn(
|
203 |
+
[default0]:07/04/2024 02:32:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 2718.13MiB. Peak allocated 7419.28MiB. Peak reserved: 7520.00MiB
|
204 |
+
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
205 |
+
[default5]: warnings.warn(
|
206 |
+
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
|
207 |
+
[default1]: warnings.warn(
|
208 |
+
[default0]:07/04/2024 02:32:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 5682.98MiB. Peak reserved: 9170.00MiB
|
209 |
+
[default4]:07/04/2024 02:32:42 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 93.3K | tokens_per_sec: 45K | tokens_per_sec_per_gpu: 5.62K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 0.0001 | model_tflops_per_gpu: 51 | hardware_tflops_per_gpu: 51 | grad_norm: 21.2 | cuda_memory_allocated: 3.22G | cuda_max_memory_reserved: 5.86G | hd_total_memory_tb: 312G | hd_used_memory_tb: 67.8G | hd_free_memory_tb: 244G
|
210 |
+
[default0]:07/04/2024 02:34:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 8570.26MiB. Peak reserved: 9170.00MiB
|
211 |
+
[default4]:07/04/2024 02:34:01 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 79.3K | tokens_per_sec: 52.9K | tokens_per_sec_per_gpu: 6.61K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 9.53e-05 | model_tflops_per_gpu: 60 | hardware_tflops_per_gpu: 60 | grad_norm: 21.3 | cuda_memory_allocated: 3.22G | cuda_max_memory_reserved: 6.28G | hd_total_memory_tb: 312G | hd_used_memory_tb: 67.8G | hd_free_memory_tb: 244G
|
212 |
+
[default0]:07/04/2024 02:34:01 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 5682.98MiB. Peak reserved: 9170.00MiB
|
213 |
+
[default0]:07/04/2024 02:35:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 8570.26MiB. Peak reserved: 9170.00MiB
|
214 |
+
[default0]:STAGE:2024-07-04 02:35:21 1146599:1146599 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
|
215 |
+
[default4]:07/04/2024 02:35:21 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 79.7K | tokens_per_sec: 52.6K | tokens_per_sec_per_gpu: 6.58K | global_batch_size: 1.02K | lm_loss: 9.94 | lr: 9.05e-05 | model_tflops_per_gpu: 59.7 | hardware_tflops_per_gpu: 59.7 | grad_norm: 115 | cuda_memory_allocated: 3.22G | cuda_max_memory_reserved: 6.28G | hd_total_memory_tb: 312G | hd_used_memory_tb: 67.8G | hd_free_memory_tb: 244G
|
216 |
+
[default0]:07/04/2024 02:35:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 5682.98MiB. Peak reserved: 9170.00MiB
|
217 |
+
[default0]:07/04/2024 02:36:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 8570.26MiB. Peak reserved: 9170.00MiB
|
218 |
+
[default4]:07/04/2024 02:36:40 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 79.9K | tokens_per_sec: 52.5K | tokens_per_sec_per_gpu: 6.56K | global_batch_size: 1.02K | lm_loss: 13.3 | lr: 8.58e-05 | model_tflops_per_gpu: 59.5 | hardware_tflops_per_gpu: 59.5 | grad_norm: 22.8 | cuda_memory_allocated: 3.22G | cuda_max_memory_reserved: 6.28G | hd_total_memory_tb: 312G | hd_used_memory_tb: 67.8G | hd_free_memory_tb: 244G
|
219 |
+
[default0]:07/04/2024 02:36:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 5682.98MiB. Peak reserved: 9170.00MiB
|
220 |
+
[default4]:07/04/2024 02:38:00 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 79.7K | tokens_per_sec: 52.7K | tokens_per_sec_per_gpu: 6.58K | global_batch_size: 1.02K | lm_loss: 10.2 | lr: 8.11e-05 | model_tflops_per_gpu: 59.7 | hardware_tflops_per_gpu: 59.7 | grad_norm: 10.4
|
221 |
+
[default0]:07/04/2024 02:38:00 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4034.71MiB. Peak allocated 8570.26MiB. Peak reserved: 9170.00MiB
|
222 |
+
[default4]:07/04/2024 02:39:20 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 79.9K | tokens_per_sec: 52.5K | tokens_per_sec_per_gpu: 6.56K | global_batch_size: 1.02K | lm_loss: 9.36 | lr: 7.63e-05 | model_tflops_per_gpu: 59.5 | hardware_tflops_per_gpu: 59.5 | grad_norm: 15.4
|
223 |
+
[default0]:STAGE:2024-07-04 02:42:21 1146599:1146599 ActivityProfilerController.cpp:320] Completed Stage: Collection
|
224 |
+
[default0]:STAGE:2024-07-04 02:42:40 1146599:1146599 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
|
225 |
+
[default1]:[rank1]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=350245, OpType=_REDUCE_SCATTER_BASE, NumelIn=8388608, NumelOut=4194304, Timeout(ms)=600000) ran for 600021 milliseconds before timing out.
|
226 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600033 milliseconds before timing out.
|
227 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600085 milliseconds before timing out.
|
228 |
+
[default5]:[rank5]: Traceback (most recent call last):
|
229 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
230 |
+
[default5]:[rank5]: trainer.train(dataloader)
|
231 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
232 |
+
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
233 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
234 |
+
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
|
235 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
236 |
+
[default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
237 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
238 |
+
[default5]:[rank5]: output = model(**micro_batch)
|
239 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
240 |
+
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
|
241 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
242 |
+
[default5]:[rank5]: return forward_call(*args, **kwargs)
|
243 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
244 |
+
[default5]:[rank5]: sharded_logits = self.model(
|
245 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
246 |
+
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
|
247 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
248 |
+
[default5]:[rank5]: return forward_call(*args, **kwargs)
|
249 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
250 |
+
[default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
251 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
252 |
+
[default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
253 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
254 |
+
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
|
255 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
256 |
+
[default5]:[rank5]: return forward_call(*args, **kwargs)
|
257 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
|
258 |
+
[default5]:[rank5]: new_kwargs[name] = recv_from_pipeline_state_buffer(
|
259 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
|
260 |
+
[default5]:[rank5]: pipeline_state.run_communication()
|
261 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
|
262 |
+
[default5]:[rank5]: recv_activation_tensor = recv_activation()
|
263 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
|
264 |
+
[default5]:[rank5]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
|
265 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
|
266 |
+
[default5]:[rank5]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
|
267 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
|
268 |
+
[default5]:[rank5]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
|
269 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 269, in _recv_meta
|
270 |
+
[default5]:[rank5]: dist.recv(
|
271 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
|
272 |
+
[default5]:[rank5]: return func(*args, **kwargs)
|
273 |
+
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
|
274 |
+
[default5]:[rank5]: pg.recv([tensor], group_src_rank, tag).wait()
|
275 |
+
[default5]:[rank5]: torch.distributed.DistBackendError: NCCL communicator was aborted on rank 1.
|
276 |
+
[default4]:[rank4]: Traceback (most recent call last):
|
277 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
278 |
+
[default4]:[rank4]: trainer.train(dataloader)
|
279 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
280 |
+
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
281 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
282 |
+
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
|
283 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
284 |
+
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
285 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
286 |
+
[default4]:[rank4]: output = model(**micro_batch)
|
287 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
288 |
+
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
|
289 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
290 |
+
[default4]:[rank4]: return forward_call(*args, **kwargs)
|
291 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
292 |
+
[default4]:[rank4]: sharded_logits = self.model(
|
293 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
294 |
+
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
|
295 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
296 |
+
[default4]:[rank4]: return forward_call(*args, **kwargs)
|
297 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
298 |
+
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
299 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
300 |
+
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
301 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
302 |
+
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
|
303 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
304 |
+
[default4]:[rank4]: return forward_call(*args, **kwargs)
|
305 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
|
306 |
+
[default4]:[rank4]: new_kwargs[name] = recv_from_pipeline_state_buffer(
|
307 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
|
308 |
+
[default4]:[rank4]: pipeline_state.run_communication()
|
309 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
|
310 |
+
[default4]:[rank4]: recv_activation_tensor = recv_activation()
|
311 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
|
312 |
+
[default4]:[rank4]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
|
313 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
|
314 |
+
[default4]:[rank4]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
|
315 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
|
316 |
+
[default4]:[rank4]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
|
317 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 269, in _recv_meta
|
318 |
+
[default4]:[rank4]: dist.recv(
|
319 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
|
320 |
+
[default4]:[rank4]: return func(*args, **kwargs)
|
321 |
+
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv
|
322 |
+
[default4]:[rank4]: pg.recv([tensor], group_src_rank, tag).wait()
|
323 |
+
[default4]:[rank4]: torch.distributed.DistBackendError: NCCL communicator was aborted on rank 1.
|
324 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 1] Timeout at NCCL work: 27658, last enqueued NCCL work: 27658, last completed NCCL work: 27657.
|
325 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:577] [Rank 1] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
|
326 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:583] [Rank 1] To avoid data inconsistency, we are taking the entire process down.
|
327 |
+
[default5]:[rank5]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600085 milliseconds before timing out.
|
328 |
+
[default5]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
329 |
+
[default5]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0c40110897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
330 |
+
[default5]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f0c413e9c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
331 |
+
[default5]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f0c413eea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
332 |
+
[default5]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f0c413efdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
333 |
+
[default5]:frame #4: <unknown function> + 0xd3e95 (0x7f0c8ce88e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
334 |
+
[default5]:frame #5: <unknown function> + 0x8609 (0x7f0c91ecf609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
335 |
+
[default5]:frame #6: clone + 0x43 (0x7f0c91c9a353 in /lib/x86_64-linux-gnu/libc.so.6)
|
336 |
+
[default5]:
|
337 |
+
[default5]:terminate called after throwing an instance of 'c10::DistBackendError'
|
338 |
+
[default5]: what(): [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600085 milliseconds before timing out.
|
339 |
+
[default5]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
340 |
+
[default5]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0c40110897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
341 |
+
[default5]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f0c413e9c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
342 |
+
[default5]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f0c413eea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
343 |
+
[default5]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f0c413efdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
344 |
+
[default5]:frame #4: <unknown function> + 0xd3e95 (0x7f0c8ce88e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
345 |
+
[default5]:frame #5: <unknown function> + 0x8609 (0x7f0c91ecf609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
346 |
+
[default5]:frame #6: clone + 0x43 (0x7f0c91c9a353 in /lib/x86_64-linux-gnu/libc.so.6)
|
347 |
+
[default5]:
|
348 |
+
[default5]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
|
349 |
+
[default5]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f0c40110897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
350 |
+
[default5]:frame #1: <unknown function> + 0xe32119 (0x7f0c41073119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
351 |
+
[default5]:frame #2: <unknown function> + 0xd3e95 (0x7f0c8ce88e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
352 |
+
[default5]:frame #3: <unknown function> + 0x8609 (0x7f0c91ecf609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
353 |
+
[default5]:frame #4: clone + 0x43 (0x7f0c91c9a353 in /lib/x86_64-linux-gnu/libc.so.6)
|
354 |
+
[default5]:
|
355 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 1] Timeout at NCCL work: 27658, last enqueued NCCL work: 27658, last completed NCCL work: 27657.
|
356 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:577] [Rank 1] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
|
357 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:583] [Rank 1] To avoid data inconsistency, we are taking the entire process down.
|
358 |
+
[default4]:[rank4]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600033 milliseconds before timing out.
|
359 |
+
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
360 |
+
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f9ee8af7897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
361 |
+
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f9ee9dd0c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
362 |
+
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f9ee9dd5a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
363 |
+
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f9ee9dd6dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
364 |
+
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f9f3586fe95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
365 |
+
[default4]:frame #5: <unknown function> + 0x8609 (0x7f9f3a8b6609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
366 |
+
[default4]:frame #6: clone + 0x43 (0x7f9f3a681353 in /lib/x86_64-linux-gnu/libc.so.6)
|
367 |
+
[default4]:
|
368 |
+
[default4]:terminate called after throwing an instance of 'c10::DistBackendError'
|
369 |
+
[default4]: what(): [PG 4 Rank 1] Process group watchdog thread terminated with exception: [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27658, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600033 milliseconds before timing out.
|
370 |
+
[default4]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
|
371 |
+
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f9ee8af7897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
372 |
+
[default4]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7f9ee9dd0c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
373 |
+
[default4]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7f9ee9dd5a80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
374 |
+
[default4]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7f9ee9dd6dcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
375 |
+
[default4]:frame #4: <unknown function> + 0xd3e95 (0x7f9f3586fe95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
376 |
+
[default4]:frame #5: <unknown function> + 0x8609 (0x7f9f3a8b6609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
377 |
+
[default4]:frame #6: clone + 0x43 (0x7f9f3a681353 in /lib/x86_64-linux-gnu/libc.so.6)
|
378 |
+
[default4]:
|
379 |
+
[default4]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
|
380 |
+
[default4]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f9ee8af7897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
|
381 |
+
[default4]:frame #1: <unknown function> + 0xe32119 (0x7f9ee9a5a119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
|
382 |
+
[default4]:frame #2: <unknown function> + 0xd3e95 (0x7f9f3586fe95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
|
383 |
+
[default4]:frame #3: <unknown function> + 0x8609 (0x7f9f3a8b6609 in /lib/x86_64-linux-gnu/libpthread.so.0)
|
384 |
+
[default4]:frame #4: clone + 0x43 (0x7f9f3a681353 in /lib/x86_64-linux-gnu/libc.so.6)
|
385 |
+
[default4]:
|
386 |
+
W0704 02:49:26.476000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146599 closing signal SIGTERM
|
387 |
+
W0704 02:49:26.476000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146600 closing signal SIGTERM
|
388 |
+
W0704 02:49:26.476000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146601 closing signal SIGTERM
|
389 |
+
W0704 02:49:26.479000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146602 closing signal SIGTERM
|
390 |
+
W0704 02:49:26.479000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146605 closing signal SIGTERM
|
391 |
+
W0704 02:49:26.480000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1146606 closing signal SIGTERM
|
392 |
+
E0704 02:49:33.166000 139799591991104 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 4 (pid: 1146603) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
|
393 |
+
Traceback (most recent call last):
|
394 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
|
395 |
+
sys.exit(main())
|
396 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
|
397 |
+
return f(*args, **kwargs)
|
398 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
|
399 |
+
run(args)
|
400 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
|
401 |
+
elastic_launch(
|
402 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
|
403 |
+
return launch_agent(self._config, self._entrypoint, list(args))
|
404 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
|
405 |
+
raise ChildFailedError(
|
406 |
+
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
|
407 |
+
============================================================
|
408 |
+
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
|
409 |
+
------------------------------------------------------------
|
410 |
+
Failures:
|
411 |
+
[1]:
|
412 |
+
time : 2024-07-04_02:49:26
|
413 |
+
host : ip-26-0-171-88.ec2.internal
|
414 |
+
rank : 5 (local_rank: 5)
|
415 |
+
exitcode : -6 (pid: 1146604)
|
416 |
+
error_file: <N/A>
|
417 |
+
traceback : Signal 6 (SIGABRT) received by PID 1146604
|
418 |
+
------------------------------------------------------------
|
419 |
+
Root Cause (first observed failure):
|
420 |
+
[0]:
|
421 |
+
time : 2024-07-04_02:49:26
|
422 |
+
host : ip-26-0-171-88.ec2.internal
|
423 |
+
rank : 4 (local_rank: 4)
|
424 |
+
exitcode : -6 (pid: 1146603)
|
425 |
+
error_file: <N/A>
|
426 |
+
traceback : Signal 6 (SIGABRT) received by PID 1146603
|
427 |
+
============================================================
|
428 |
+
srun: error: ip-26-0-171-88: task 0: Exited with exit code 1
|
429 |
+
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|
llama-1B/8_GPUS/dp-2_tp-2_pp-2_mbz-1/status.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
timeout
|