3outeille HF staff commited on
Commit
5e8b7a4
1 Parent(s): 1395bd4

Upload llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2

Browse files
llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/bench.slurm ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --job-name=bench_cluster
4
+ #SBATCH --time=02:00:00
5
+ #SBATCH --partition=hopper-prod
6
+ #SBATCH --nodes=1
7
+ #SBATCH --gres=gpu:8
8
+ #SBATCH --qos=normal
9
+ #SBATCH --ntasks-per-node=1
10
+ #SBATCH --cpus-per-task=96
11
+ #SBATCH --exclusive
12
+ #SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out
13
+ #SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out
14
+
15
+ # Function to update status based on squeue output
16
+ update_status() {
17
+ job_id=$1
18
+ status_file=$2
19
+ # For unknown reasons, it doenst update status for pending. It only works for running
20
+ while true; do
21
+ job_status=$(squeue --job $job_id --noheader --format=%T)
22
+ echo "Job status: $job_status"
23
+ if [ -z "$job_status" ]; then
24
+ # Job has finished or is not found
25
+ break
26
+ elif [ "$job_status" = "RUNNING" ]; then
27
+ printf "running" > $status_file
28
+ break
29
+ fi
30
+ sleep 10
31
+ done
32
+ }
33
+
34
+ # Misc initializations.
35
+ echo "========================"
36
+ echo "START TIME: $(date)"
37
+ source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
38
+ conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
39
+ echo python3 version = $(python3 --version)
40
+ echo "========================"
41
+
42
+ # Slurm stuff
43
+ export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
44
+ export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
45
+ export MASTER_PORT=$((1024 + RANDOM % 64511))
46
+
47
+ export TMPDIR=/scratch
48
+ export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
49
+ export CUBLAS_WORKSPACE_CONFIG=":4096:8"
50
+ export CUDA_DEVICE_MAX_CONNECTIONS="1"
51
+
52
+ huggingface-cli login --token $HUGGINGFACE_TOKEN
53
+
54
+
55
+ NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
56
+ CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/config.yaml"
57
+
58
+ LAUNCHER="torchrun \
59
+ --nproc_per_node 8 \
60
+ --nnodes 1 \
61
+ --rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
62
+ --rdzv_backend c10d \
63
+ --max_restarts 0 \
64
+ --tee 3 \
65
+ --node_rank ${SLURM_PROCID}"
66
+
67
+ # Checkout the bench_cluster branch
68
+ cd $NANOTRON_REPO
69
+ git checkout bench_cluster
70
+ cd ..
71
+ # Get the current job ID
72
+ job_id=${SLURM_JOB_ID}
73
+
74
+ # Update status to "pending" or "running" in the background
75
+ update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt &
76
+
77
+ # Run the main command
78
+ srun -u $LAUNCHER $CMD
79
+ exit_status=$?
80
+
81
+ # Update status based on the exit status of `srun`
82
+ if [ $exit_status -eq 0 ]; then
83
+ printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt
84
+ else
85
+ if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out; then
86
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt
87
+ elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out; then
88
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt
89
+ elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out; then
90
+ printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt
91
+ else
92
+ printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt
93
+ fi
94
+ fi
95
+
96
+ # Run the report script if the job completed successfully
97
+ if [ $exit_status -eq 0 ]; then
98
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2 --is_logs
99
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2 --is_profiler
100
+ fi
101
+
102
+
103
+ # Push to hub the folder using huggingface_cli
104
+ huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2 llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2 --commit-message "Upload llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2"
105
+
106
+ # Verify the upload
107
+ if [ $? -eq 0 ]; then
108
+ echo "Uploading to Huggingface Hub successful"
109
+ else
110
+ echo "Failed to upload to Huggingface Hub"
111
+ fi
llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/config.yaml ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ general:
2
+ project: bench_cluster
3
+ seed: 42
4
+ model:
5
+ ddp_bucket_cap_mb: 25
6
+ dtype: bfloat16
7
+ init_method:
8
+ std: 0.025
9
+ make_vocab_size_divisible_by: 1
10
+ model_config:
11
+ bos_token_id: 1
12
+ eos_token_id: 2
13
+ hidden_act: silu
14
+ hidden_size: 2048
15
+ initializer_range: 0.02
16
+ intermediate_size: 4096
17
+ is_llama_config: true
18
+ max_position_embeddings: 4096
19
+ num_attention_heads: 32
20
+ num_hidden_layers: 24
21
+ num_key_value_heads: 32
22
+ pad_token_id: null
23
+ pretraining_tp: 1
24
+ rms_norm_eps: 1.0e-05
25
+ rope_scaling: null
26
+ rope_theta: 10000.0
27
+ tie_word_embeddings: true
28
+ use_cache: true
29
+ vocab_size: 50257
30
+ optimizer:
31
+ accumulate_grad_in_fp32: true
32
+ clip_grad: 1.0
33
+ learning_rate_scheduler:
34
+ learning_rate: 0.0001
35
+ lr_decay_style: linear
36
+ lr_warmup_style: linear
37
+ lr_warmup_steps: 1
38
+ min_decay_lr: 1.0e-05
39
+ optimizer_factory:
40
+ adam_beta1: 0.9
41
+ adam_beta2: 0.95
42
+ adam_eps: 1.0e-08
43
+ name: adamW
44
+ torch_adam_is_fused: true
45
+ weight_decay: 0.01
46
+ zero_stage: 1
47
+ parallelism:
48
+ dp: 1
49
+ expert_parallel_size: 1
50
+ pp: 4
51
+ pp_engine: 1f1b
52
+ tp: 2
53
+ tp_linear_async_communication: false
54
+ tp_mode: REDUCE_SCATTER
55
+ profiler:
56
+ profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2
57
+ tokenizer:
58
+ tokenizer_max_length: null
59
+ tokenizer_name_or_path: openai-community/gpt2
60
+ tokenizer_revision: null
61
+ data_stages:
62
+ - name: Training Stage
63
+ start_training_step: 1
64
+ data:
65
+ dataset:
66
+ dataset_overwrite_cache: false
67
+ dataset_processing_num_proc_per_process: 64
68
+ hf_dataset_config_name: null
69
+ hf_dataset_or_datasets: roneneldan/TinyStories
70
+ hf_dataset_splits: train
71
+ text_column_name: text
72
+ num_loading_workers: 0
73
+ seed: 42
74
+ lighteval: null
75
+ tokens:
76
+ train_steps: 20
77
+ val_check_interval: -1
78
+ batch_accumulation_per_replica: 512
79
+ limit_test_batches: 0
80
+ limit_val_batches: 0
81
+ micro_batch_size: 2
82
+ sequence_length: 4096
83
+ logging:
84
+ iteration_step_info_interval: 1
85
+ log_level: info
86
+ log_level_replica: info
87
+ checkpoints:
88
+ checkpoint_interval: 100000
89
+ checkpoints_path: /dev/null
90
+ resume_checkpoint_path: null
llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/log.out ADDED
@@ -0,0 +1,608 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ========================
2
+ START TIME: Wed Jul 3 21:08:06 UTC 2024
3
+ python3 version = Python 3.10.14
4
+ ========================
5
+ The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
6
+ Token is valid (permission: write).
7
+ Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
8
+ Login successful
9
+ Already on 'bench_cluster'
10
+ M examples/config_tiny_llama.py
11
+ M examples/config_tiny_llama.yaml
12
+ M examples/train_tiny_llama.sh
13
+ M src/nanotron/models/llama.py
14
+ M src/nanotron/trainer.py
15
+ Your branch is up to date with 'origin/bench_cluster'.
16
+ Job status: RUNNING
17
+ W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757]
18
+ W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] *****************************************
19
+ W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20
+ W0703 21:08:08.929000 139794302568256 torch/distributed/run.py:757] *****************************************
21
+ [default0]:07/03/2024 21:08:25 [WARNING|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Vocab Size Padding] Padded vocab (size: 50257) with 1 dummy tokens (new size: 50258)
22
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Config:
23
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Config(general=GeneralArgs(project='bench_cluster',
24
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: run='%date_%jobid',
25
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: seed=42,
26
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: step=None,
27
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: consumed_train_samples=None,
28
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: benchmark_csv_path=None,
29
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: ignore_sanity_checks=True),
30
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: parallelism=ParallelismArgs(dp=1,
31
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pp=4,
32
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tp=2,
33
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7fbd74a78670>,
34
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
35
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tp_linear_async_communication=False,
36
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: expert_parallel_size=1),
37
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
38
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: eos_token_id=2,
39
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hidden_act='silu',
40
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hidden_size=2048,
41
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: initializer_range=0.02,
42
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: intermediate_size=4096,
43
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: is_llama_config=True,
44
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: max_position_embeddings=4096,
45
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_attention_heads=32,
46
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_hidden_layers=24,
47
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_key_value_heads=32,
48
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pad_token_id=None,
49
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pretraining_tp=1,
50
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rms_norm_eps=1e-05,
51
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rope_scaling=None,
52
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rope_theta=10000.0,
53
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tie_word_embeddings=True,
54
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: use_cache=True,
55
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: vocab_size=50258),
56
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: init_method=RandomInit(std=0.025),
57
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: dtype=torch.bfloat16,
58
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: make_vocab_size_divisible_by=1,
59
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: ddp_bucket_cap_mb=25),
60
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
61
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tokenizer_revision=None,
62
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tokenizer_max_length=None),
63
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
64
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: checkpoint_interval=100000,
65
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: save_initial_state=False,
66
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: resume_checkpoint_path=None,
67
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: checkpoints_path_is_shared_file_system=False),
68
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: logging=LoggingArgs(log_level='info',
69
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: log_level_replica='info',
70
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: iteration_step_info_interval=1),
71
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tokens=TokensArgs(sequence_length=4096,
72
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: train_steps=20,
73
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: micro_batch_size=2,
74
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: batch_accumulation_per_replica=512,
75
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: val_check_interval=-1,
76
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: limit_val_batches=0,
77
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: limit_test_batches=0),
78
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
79
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: adam_beta1=0.9,
80
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: adam_beta2=0.95,
81
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: torch_adam_is_fused=True,
82
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: name='adamW'),
83
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: zero_stage=1,
84
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: weight_decay=0.01,
85
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: clip_grad=1.0,
86
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: accumulate_grad_in_fp32=True,
87
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
88
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lr_warmup_steps=1,
89
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lr_warmup_style='linear',
90
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lr_decay_style='linear',
91
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lr_decay_steps=19,
92
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lr_decay_starting_step=None,
93
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: min_decay_lr=1e-05)),
94
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: data_stages=[DatasetStageArgs(name='Training Stage',
95
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: start_training_step=1,
96
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
97
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hf_dataset_splits='train',
98
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hf_dataset_config_name=None,
99
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: dataset_processing_num_proc_per_process=64,
100
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: dataset_overwrite_cache=False,
101
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: text_column_name='text'),
102
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: seed=42,
103
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_loading_workers=0))],
104
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2')),
105
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: lighteval=None)
106
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Model Config:
107
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: LlamaConfig(bos_token_id=1,
108
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: eos_token_id=2,
109
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hidden_act='silu',
110
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: hidden_size=2048,
111
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: initializer_range=0.02,
112
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: intermediate_size=4096,
113
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: is_llama_config=True,
114
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: max_position_embeddings=4096,
115
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_attention_heads=32,
116
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_hidden_layers=24,
117
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: num_key_value_heads=32,
118
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pad_token_id=None,
119
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: pretraining_tp=1,
120
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rms_norm_eps=1e-05,
121
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rope_scaling=None,
122
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: rope_theta=10000.0,
123
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: tie_word_embeddings=True,
124
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: use_cache=True,
125
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: vocab_size=50258)
126
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Building model..
127
+ [default0]:07/03/2024 21:08:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Setting PP block ranks...
128
+ [default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: Local number of parameters: 135M (258.20MiB)
129
+ [default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 262.21MiB. Peak allocated: 264.24MiB Peak reserved: 280.00MiB
130
+ [default6]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: No checkpoint path provided.
131
+ [default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: Local number of parameters: 198M (378.21MiB)
132
+ [default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 385.23MiB. Peak allocated: 387.26MiB Peak reserved: 402.00MiB
133
+ [default1]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=1|ip-26-0-162-233]: No checkpoint path provided.
134
+ [default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: Local number of parameters: 147M (280.05MiB)
135
+ [default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 287.07MiB. Peak allocated: 289.10MiB Peak reserved: 302.00MiB
136
+ [default2]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=0|ip-26-0-162-233]: No checkpoint path provided.
137
+ [default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: Local number of parameters: 126M (240.05MiB)
138
+ [default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 246.06MiB. Peak allocated: 248.09MiB Peak reserved: 262.00MiB
139
+ [default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: Local number of parameters: 135M (258.20MiB)
140
+ [default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 262.21MiB. Peak allocated: 264.24MiB Peak reserved: 280.00MiB
141
+ [default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Total number of parameters: 1.21G (2313.02MiB)
142
+ [default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Local number of parameters: 198M (378.21MiB)
143
+ [default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 385.23MiB. Peak allocated: 387.26MiB Peak reserved: 402.00MiB
144
+ [default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: No checkpoint path provided.
145
+ [default0]:07/03/2024 21:08:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Parametrizing model parameters using StandardParametrizator
146
+ [default5]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=1|ip-26-0-162-233]: No checkpoint path provided.
147
+ [default7]:07/03/2024 21:08:39 [INFO|DP=0|PP=3|TP=1|ip-26-0-162-233]: No checkpoint path provided.
148
+ [default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: Local number of parameters: 126M (240.05MiB)
149
+ [default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: Local number of parameters: 147M (280.05MiB)
150
+ [default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: [After model building] Memory usage: 287.07MiB. Peak allocated: 289.10MiB Peak reserved: 302.00MiB
151
+ [default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: [After model building] Memory usage: 246.06MiB. Peak allocated: 248.09MiB Peak reserved: 262.00MiB
152
+ [default4]:07/03/2024 21:08:39 [INFO|DP=0|PP=2|TP=0|ip-26-0-162-233]: No checkpoint path provided.
153
+ [default3]:07/03/2024 21:08:39 [INFO|DP=0|PP=1|TP=1|ip-26-0-162-233]: No checkpoint path provided.
154
+ [default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Optimizer Building] Using LearningRateForSP as learning rate
155
+ [default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [ZeRO sharding] Size of optimizer params per rank:
156
+ [default0]:07/03/2024 21:08:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [ZeRO sharding] DP Rank 0 has 198M out of 198M (100.00%) params' optimizer states
157
+ [default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
158
+ [default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Using `datasets` library
159
+ [default0]:07/03/2024 21:08:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
160
+ [default0]:Repo card metadata block was not found. Setting CardData to empty.
161
+ [default0]:07/03/2024 21:08:42 [WARNING|DP=0|PP=0|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
162
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Training Plan] There are 1 training stages
163
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Stage Training Stage] start from step 1
164
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]:
165
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: [Start training] datetime: 2024-07-03 21:08:43.202168 | mbs: 2 | grad_accum: 512 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
166
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
167
+ [default0]:07/03/2024 21:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 1898.09MiB. Peak allocated 1898.09MiB. Peak reserved: 1918.00MiB
168
+ [default2]:07/03/2024 21:08:43 [WARNING|DP=0|PP=1|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
169
+ [default5]:07/03/2024 21:08:43 [WARNING|DP=0|PP=2|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
170
+ [default7]:07/03/2024 21:08:43 [WARNING|DP=0|PP=3|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
171
+ [default4]:07/03/2024 21:08:43 [WARNING|DP=0|PP=2|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
172
+ [default4]:Repo card metadata block was not found. Setting CardData to empty.
173
+ [default3]:07/03/2024 21:08:43 [WARNING|DP=0|PP=1|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
174
+ [default2]:Repo card metadata block was not found. Setting CardData to empty.
175
+ [default5]:Repo card metadata block was not found. Setting CardData to empty.
176
+ [default3]:Repo card metadata block was not found. Setting CardData to empty.
177
+ [default7]:Repo card metadata block was not found. Setting CardData to empty.
178
+ [default6]:07/03/2024 21:08:43 [WARNING|DP=0|PP=3|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
179
+ [default1]:Repo card metadata block was not found. Setting CardData to empty.
180
+ [default1]:07/03/2024 21:08:43 [WARNING|DP=0|PP=0|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty.
181
+ [default6]:Repo card metadata block was not found. Setting CardData to empty.
182
+ [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
183
+ [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
184
+ [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
185
+ [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
186
+ [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
187
+ [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
188
+ [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
189
+ [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
190
+ [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
191
+ [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
192
+ [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
193
+ [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
194
+ [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
195
+ [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
196
+ [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
197
+ [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
198
+ [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
199
+ [default6]: warnings.warn(
200
+ [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
201
+ [default5]: warnings.warn(
202
+ [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
203
+ [default3]: warnings.warn(
204
+ [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
205
+ [default2]: warnings.warn(
206
+ [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
207
+ [default4]: warnings.warn(
208
+ [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
209
+ [default7]: warnings.warn(
210
+ [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
211
+ [default1]: warnings.warn(
212
+ [default0]:07/03/2024 21:09:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 1965.66MiB. Peak allocated 11546.57MiB. Peak reserved: 11756.00MiB
213
+ [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
214
+ [default0]: warnings.warn(
215
+ [default6]:07/03/2024 21:09:35 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 51.6K | tokens_per_sec: 81.3K | tokens_per_sec_per_gpu: 10.2K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 0.0001 | model_tflops_per_gpu: 92.2 | hardware_tflops_per_gpu: 92.2 | grad_norm: 14.8 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
216
+ [default0]:07/03/2024 21:09:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 3478.54MiB. Peak reserved: 11954.00MiB
217
+ [default6]:07/03/2024 21:10:02 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 26.9K | tokens_per_sec: 156K | tokens_per_sec_per_gpu: 19.5K | global_batch_size: 1.02K | lm_loss: 11.2 | lr: 9.53e-05 | model_tflops_per_gpu: 177 | hardware_tflops_per_gpu: 177 | grad_norm: 14.9 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
218
+ [default0]:07/03/2024 21:10:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13342.00MiB
219
+ [default0]:07/03/2024 21:10:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13342.00MiB
220
+ [default6]:07/03/2024 21:10:29 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 27K | tokens_per_sec: 155K | tokens_per_sec_per_gpu: 19.4K | global_batch_size: 1.02K | lm_loss: 9.53 | lr: 9.05e-05 | model_tflops_per_gpu: 176 | hardware_tflops_per_gpu: 176 | grad_norm: 35.8 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
221
+ [default0]:07/03/2024 21:10:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
222
+ [default0]:07/03/2024 21:10:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13414.00MiB
223
+ [default0]:STAGE:2024-07-03 21:10:29 1812463:1812463 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
224
+ [default0]:07/03/2024 21:11:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
225
+ [default0]:07/03/2024 21:11:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 3478.56MiB. Peak reserved: 13414.00MiB
226
+ [default6]:07/03/2024 21:11:03 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 33.9K | tokens_per_sec: 124K | tokens_per_sec_per_gpu: 15.5K | global_batch_size: 1.02K | lm_loss: 12.3 | lr: 8.58e-05 | model_tflops_per_gpu: 140 | hardware_tflops_per_gpu: 140 | grad_norm: 37.4 | cuda_memory_allocated: 2.51G | cuda_max_memory_reserved: 5.82G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.1G | hd_free_memory_tb: 246G
227
+ [default6]:07/03/2024 21:11:37 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 33.7K | tokens_per_sec: 124K | tokens_per_sec_per_gpu: 15.6K | global_batch_size: 1.02K | lm_loss: 9.94 | lr: 8.11e-05 | model_tflops_per_gpu: 141 | hardware_tflops_per_gpu: 141 | grad_norm: 14.1
228
+ [default0]:07/03/2024 21:11:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-162-233]: Memory usage: 3478.54MiB. Peak allocated 12989.74MiB. Peak reserved: 13414.00MiB
229
+ [default6]:07/03/2024 21:12:11 [INFO|DP=0|PP=3|TP=0|ip-26-0-162-233]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 33.7K | tokens_per_sec: 125K | tokens_per_sec_per_gpu: 15.6K | global_batch_size: 1.02K | lm_loss: 9.44 | lr: 7.63e-05 | model_tflops_per_gpu: 141 | hardware_tflops_per_gpu: 141 | grad_norm: 8.14
230
+ [default0]:STAGE:2024-07-03 21:13:39 1812463:1812463 ActivityProfilerController.cpp:320] Completed Stage: Collection
231
+ [default0]:STAGE:2024-07-03 21:13:48 1812463:1812463 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
232
+ [default5]:[rank5]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600016 milliseconds before timing out.
233
+ [default7]:[rank7]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
234
+ [default1]:[rank1]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=178199, OpType=_REDUCE_SCATTER_BASE, NumelIn=16777216, NumelOut=8388608, Timeout(ms)=600000) ran for 600000 milliseconds before timing out.
235
+ [default2]:[rank2]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600022 milliseconds before timing out.
236
+ [default4]:[rank4]:[E ProcessGroupNCCL.cpp:563] [Rank 2] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600026 milliseconds before timing out.
237
+ [default3]:[rank3]:[E ProcessGroupNCCL.cpp:563] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=55299, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600020 milliseconds before timing out.
238
+ [default6]:[rank6]:[E ProcessGroupNCCL.cpp:563] [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
239
+ [default2]:[rank2]: Traceback (most recent call last):
240
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
241
+ [default4]:[rank4]: Traceback (most recent call last):
242
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
243
+ [default4]:[rank4]: trainer.train(dataloader)
244
+ [default2]:[rank2]: trainer.train(dataloader)
245
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
246
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
247
+ [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
248
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
249
+ [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
250
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
251
+ [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
252
+ [default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
253
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
254
+ [default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
255
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
256
+ [default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
257
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
258
+ [default2]:[rank2]: output = model(**micro_batch)
259
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
260
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
261
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
262
+ [default4]:[rank4]: output = model(**micro_batch)
263
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
264
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
265
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
266
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
267
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
268
+ [default4]:[rank4]: sharded_logits = self.model(
269
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
270
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
271
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
272
+ [default2]:[rank2]: sharded_logits = self.model(
273
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
274
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
275
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
276
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
277
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
278
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
279
+ [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
280
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
281
+ [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
282
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
283
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
284
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
285
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
286
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
287
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
288
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
289
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
290
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
291
+ [default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
292
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
293
+ [default4]:[rank4]: new_kwargs[name] = recv_from_pipeline_state_buffer(
294
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
295
+ [default4]:[rank4]: pipeline_state.run_communication()
296
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
297
+ [default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
298
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
299
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
300
+ [default4]:[rank4]: recv_activation_tensor = recv_activation()
301
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
302
+ [default4]:[rank4]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
303
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
304
+ [default4]:[rank4]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
305
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
306
+ [default4]:[rank4]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
307
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
308
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
309
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
310
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
311
+ [default2]:[rank2]: new_kwargs[name] = recv_from_pipeline_state_buffer(
312
+ [default4]:[rank4]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
313
+ [default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
314
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
315
+ [default2]:[rank2]: pipeline_state.run_communication()
316
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
317
+ [default2]:[rank2]: recv_activation_tensor = recv_activation()
318
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
319
+ [default2]:[rank2]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
320
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
321
+ [default2]:[rank2]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
322
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
323
+ [default2]:[rank2]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
324
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
325
+ [default2]:[rank2]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
326
+ [default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
327
+ [default6]:[rank6]: Traceback (most recent call last):
328
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
329
+ [default6]:[rank6]: trainer.train(dataloader)
330
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
331
+ [default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
332
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
333
+ [default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
334
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
335
+ [default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
336
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
337
+ [default6]:[rank6]: output = model(**micro_batch)
338
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
339
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
340
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
341
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
342
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
343
+ [default6]:[rank6]: sharded_logits = self.model(
344
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
345
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
346
+ [default3]:[rank3]: Traceback (most recent call last):
347
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
348
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
349
+ [default3]:[rank3]: trainer.train(dataloader)
350
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
351
+ [default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
352
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
353
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
354
+ [default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
355
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
356
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
357
+ [default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
358
+ [default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
359
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
360
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
361
+ [default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
362
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
363
+ [default3]:[rank3]: output = model(**micro_batch)
364
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
365
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
366
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
367
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
368
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
369
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
370
+ [default3]:[rank3]: sharded_logits = self.model(
371
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
372
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
373
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
374
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
375
+ [default6]:[rank6]: new_kwargs[name] = recv_from_pipeline_state_buffer(
376
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
377
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
378
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
379
+ [default6]:[rank6]: pipeline_state.run_communication()
380
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
381
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
382
+ [default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
383
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
384
+ [default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
385
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
386
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
387
+ [default6]:[rank6]: recv_activation_tensor = recv_activation()
388
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
389
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
390
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
391
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
392
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
393
+ [default6]:[rank6]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
394
+ [default3]:[rank3]: new_kwargs[name] = recv_from_pipeline_state_buffer(
395
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
396
+ [default6]:[rank6]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
397
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
398
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
399
+ [default6]:[rank6]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
400
+ [default3]:[rank3]: pipeline_state.run_communication()
401
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
402
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
403
+ [default3]:[rank3]: recv_activation_tensor = recv_activation()
404
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
405
+ [default3]:[rank3]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
406
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
407
+ [default6]:[rank6]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
408
+ [default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
409
+ [default3]:[rank3]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
410
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
411
+ [default3]:[rank3]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
412
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
413
+ [default3]:[rank3]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
414
+ [default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
415
+ [default5]:[rank5]: Traceback (most recent call last):
416
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
417
+ [default5]:[rank5]: trainer.train(dataloader)
418
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
419
+ [default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
420
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
421
+ [default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
422
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter
423
+ [default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
424
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
425
+ [default5]:[rank5]: output = model(**micro_batch)
426
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
427
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
428
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
429
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
430
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
431
+ [default5]:[rank5]: sharded_logits = self.model(
432
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
433
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
434
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
435
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
436
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
437
+ [default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
438
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
439
+ [default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
440
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
441
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
442
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
443
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
444
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
445
+ [default5]:[rank5]: new_kwargs[name] = recv_from_pipeline_state_buffer(
446
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
447
+ [default5]:[rank5]: pipeline_state.run_communication()
448
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
449
+ [default5]:[rank5]: recv_activation_tensor = recv_activation()
450
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
451
+ [default5]:[rank5]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
452
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
453
+ [default5]:[rank5]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
454
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
455
+ [default5]:[rank5]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
456
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
457
+ [default5]:[rank5]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
458
+ [default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
459
+ [default7]:[rank7]: Traceback (most recent call last):
460
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
461
+ [default7]:[rank7]: trainer.train(dataloader)
462
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
463
+ [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
464
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
465
+ [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
466
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
467
+ [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
468
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
469
+ [default7]:[rank7]: output = model(**micro_batch)
470
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
471
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
472
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
473
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
474
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
475
+ [default7]:[rank7]: sharded_logits = self.model(
476
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
477
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
478
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
479
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
480
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
481
+ [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
482
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
483
+ [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
484
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
485
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
486
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
487
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
488
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
489
+ [default7]:[rank7]: new_kwargs[name] = recv_from_pipeline_state_buffer(
490
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
491
+ [default7]:[rank7]: pipeline_state.run_communication()
492
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication
493
+ [default7]:[rank7]: recv_activation_tensor = recv_activation()
494
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__
495
+ [default7]:[rank7]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0]
496
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors
497
+ [default7]:[rank7]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag)
498
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors
499
+ [default7]:[rank7]: meta = self._recv_meta(from_rank=from_rank, tag=tag)
500
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 267, in _recv_meta
501
+ [default7]:[rank7]: self.second_metadata = torch.empty(second_metadata_num_elements, dtype=torch.long, device=self.device)
502
+ [default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory.
503
+ [default7]:[rank7]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27651, last enqueued NCCL work: 27651, last completed NCCL work: 27650.
504
+ [default7]:[rank7]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
505
+ [default7]:[rank7]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
506
+ [default7]:[rank7]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
507
+ [default7]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
508
+ [default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
509
+ [default7]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe41e729c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
510
+ [default7]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe41e72ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
511
+ [default7]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe41e72fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
512
+ [default7]:frame #4: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
513
+ [default7]:frame #5: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
514
+ [default7]:frame #6: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
515
+ [default7]:
516
+ [default7]:terminate called after throwing an instance of 'c10::DistBackendError'
517
+ [default7]: what(): [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600017 milliseconds before timing out.
518
+ [default7]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
519
+ [default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
520
+ [default7]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe41e729c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
521
+ [default7]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe41e72ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
522
+ [default7]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe41e72fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
523
+ [default7]:frame #4: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
524
+ [default7]:frame #5: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
525
+ [default7]:frame #6: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
526
+ [default7]:
527
+ [default7]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
528
+ [default7]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe41d450897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
529
+ [default7]:frame #1: <unknown function> + 0xe32119 (0x7fe41e3b3119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
530
+ [default7]:frame #2: <unknown function> + 0xd3e95 (0x7fe46a1c8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
531
+ [default7]:frame #3: <unknown function> + 0x8609 (0x7fe46f20f609 in /lib/x86_64-linux-gnu/libpthread.so.0)
532
+ [default7]:frame #4: clone + 0x43 (0x7fe46efda353 in /lib/x86_64-linux-gnu/libc.so.6)
533
+ [default7]:
534
+ [default6]:[rank6]:[E ProcessGroupNCCL.cpp:1537] [PG 4 Rank 3] Timeout at NCCL work: 27651, last enqueued NCCL work: 27651, last completed NCCL work: 27650.
535
+ [default6]:[rank6]:[E ProcessGroupNCCL.cpp:577] [Rank 3] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels, subsequent GPU operations might run on corrupted/incomplete data.
536
+ [default6]:[rank6]:[E ProcessGroupNCCL.cpp:583] [Rank 3] To avoid data inconsistency, we are taking the entire process down.
537
+ [default6]:[rank6]:[E ProcessGroupNCCL.cpp:1414] [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
538
+ [default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
539
+ [default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
540
+ [default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe180419c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
541
+ [default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe18041ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
542
+ [default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe18041fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
543
+ [default6]:frame #4: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
544
+ [default6]:frame #5: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
545
+ [default6]:frame #6: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
546
+ [default6]:
547
+ [default6]:terminate called after throwing an instance of 'c10::DistBackendError'
548
+ [default6]: what(): [PG 4 Rank 3] Process group watchdog thread terminated with exception: [Rank 3] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=27651, OpType=RECV, NumelIn=7, NumelOut=7, Timeout(ms)=600000) ran for 600018 milliseconds before timing out.
549
+ [default6]:Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):
550
+ [default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
551
+ [default6]:frame #1: c10d::ProcessGroupNCCL::WorkNCCL::checkTimeout(std::optional<std::chrono::duration<long, std::ratio<1l, 1000l> > >) + 0x1d2 (0x7fe180419c62 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
552
+ [default6]:frame #2: c10d::ProcessGroupNCCL::watchdogHandler() + 0x1a0 (0x7fe18041ea80 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
553
+ [default6]:frame #3: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x10c (0x7fe18041fdcc in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
554
+ [default6]:frame #4: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
555
+ [default6]:frame #5: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
556
+ [default6]:frame #6: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
557
+ [default6]:
558
+ [default6]:Exception raised from ncclCommWatchdog at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1418 (most recent call first):
559
+ [default6]:frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fe17f140897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so)
560
+ [default6]:frame #1: <unknown function> + 0xe32119 (0x7fe1800a3119 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so)
561
+ [default6]:frame #2: <unknown function> + 0xd3e95 (0x7fe1cbeb8e95 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/../lib/libstdc++.so.6)
562
+ [default6]:frame #3: <unknown function> + 0x8609 (0x7fe1d0eff609 in /lib/x86_64-linux-gnu/libpthread.so.0)
563
+ [default6]:frame #4: clone + 0x43 (0x7fe1d0cca353 in /lib/x86_64-linux-gnu/libc.so.6)
564
+ [default6]:
565
+ W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812463 closing signal SIGTERM
566
+ W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812464 closing signal SIGTERM
567
+ W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812465 closing signal SIGTERM
568
+ W0703 21:22:15.080000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812466 closing signal SIGTERM
569
+ W0703 21:22:15.085000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812467 closing signal SIGTERM
570
+ W0703 21:22:15.085000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1812468 closing signal SIGTERM
571
+ E0703 21:22:19.843000 139794302568256 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: -6) local_rank: 6 (pid: 1812469) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
572
+ Traceback (most recent call last):
573
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
574
+ sys.exit(main())
575
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
576
+ return f(*args, **kwargs)
577
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
578
+ run(args)
579
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
580
+ elastic_launch(
581
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
582
+ return launch_agent(self._config, self._entrypoint, list(args))
583
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
584
+ raise ChildFailedError(
585
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
586
+ ============================================================
587
+ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
588
+ ------------------------------------------------------------
589
+ Failures:
590
+ [1]:
591
+ time : 2024-07-03_21:22:15
592
+ host : ip-26-0-162-233.ec2.internal
593
+ rank : 7 (local_rank: 7)
594
+ exitcode : -6 (pid: 1812470)
595
+ error_file: <N/A>
596
+ traceback : Signal 6 (SIGABRT) received by PID 1812470
597
+ ------------------------------------------------------------
598
+ Root Cause (first observed failure):
599
+ [0]:
600
+ time : 2024-07-03_21:22:15
601
+ host : ip-26-0-162-233.ec2.internal
602
+ rank : 6 (local_rank: 6)
603
+ exitcode : -6 (pid: 1812469)
604
+ error_file: <N/A>
605
+ traceback : Signal 6 (SIGABRT) received by PID 1812469
606
+ ============================================================
607
+ srun: error: ip-26-0-162-233: task 0: Exited with exit code 1
608
+ Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
llama-1B/8_GPUS/dp-1_tp-2_pp-4_mbz-2/status.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ oom