Upload llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8
Browse files
llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/bench.slurm
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=bench_cluster
|
4 |
+
#SBATCH --time=02:00:00
|
5 |
+
#SBATCH --partition=hopper-prod
|
6 |
+
#SBATCH --nodes=1
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --qos=normal
|
9 |
+
#SBATCH --ntasks-per-node=1
|
10 |
+
#SBATCH --cpus-per-task=96
|
11 |
+
#SBATCH --exclusive
|
12 |
+
#SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out
|
13 |
+
#SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out
|
14 |
+
|
15 |
+
# Function to update status based on squeue output
|
16 |
+
update_status() {
|
17 |
+
job_id=$1
|
18 |
+
status_file=$2
|
19 |
+
# For unknown reasons, it doenst update status for pending. It only works for running
|
20 |
+
while true; do
|
21 |
+
job_status=$(squeue --job $job_id --noheader --format=%T)
|
22 |
+
echo "Job status: $job_status"
|
23 |
+
if [ -z "$job_status" ]; then
|
24 |
+
# Job has finished or is not found
|
25 |
+
break
|
26 |
+
elif [ "$job_status" = "RUNNING" ]; then
|
27 |
+
printf "running" > $status_file
|
28 |
+
break
|
29 |
+
fi
|
30 |
+
sleep 10
|
31 |
+
done
|
32 |
+
}
|
33 |
+
|
34 |
+
# Misc initializations.
|
35 |
+
echo "========================"
|
36 |
+
echo "START TIME: $(date)"
|
37 |
+
source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
|
38 |
+
conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
|
39 |
+
echo python3 version = $(python3 --version)
|
40 |
+
echo "========================"
|
41 |
+
|
42 |
+
# Slurm stuff
|
43 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
44 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
45 |
+
export MASTER_PORT=$((1024 + RANDOM % 64511))
|
46 |
+
|
47 |
+
export TMPDIR=/scratch
|
48 |
+
export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
|
49 |
+
export CUBLAS_WORKSPACE_CONFIG=":4096:8"
|
50 |
+
export CUDA_DEVICE_MAX_CONNECTIONS="1"
|
51 |
+
|
52 |
+
huggingface-cli login --token $HUGGINGFACE_TOKEN
|
53 |
+
|
54 |
+
|
55 |
+
NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
|
56 |
+
CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/config.yaml"
|
57 |
+
|
58 |
+
LAUNCHER="torchrun \
|
59 |
+
--nproc_per_node 8 \
|
60 |
+
--nnodes 1 \
|
61 |
+
--rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
|
62 |
+
--rdzv_backend c10d \
|
63 |
+
--max_restarts 0 \
|
64 |
+
--tee 3 \
|
65 |
+
--node_rank ${SLURM_PROCID}"
|
66 |
+
|
67 |
+
# Checkout the bench_cluster branch
|
68 |
+
cd $NANOTRON_REPO
|
69 |
+
git checkout bench_cluster
|
70 |
+
cd ..
|
71 |
+
# Get the current job ID
|
72 |
+
job_id=${SLURM_JOB_ID}
|
73 |
+
|
74 |
+
# Update status to "pending" or "running" in the background
|
75 |
+
update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt &
|
76 |
+
|
77 |
+
# Run the main command
|
78 |
+
srun -u $LAUNCHER $CMD
|
79 |
+
exit_status=$?
|
80 |
+
|
81 |
+
# Update status based on the exit status of `srun`
|
82 |
+
if [ $exit_status -eq 0 ]; then
|
83 |
+
printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
|
84 |
+
else
|
85 |
+
if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out; then
|
86 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
|
87 |
+
elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out; then
|
88 |
+
printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
|
89 |
+
elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out; then
|
90 |
+
printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
|
91 |
+
else
|
92 |
+
printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
|
93 |
+
fi
|
94 |
+
fi
|
95 |
+
|
96 |
+
# Run the report script if the job completed successfully
|
97 |
+
if [ $exit_status -eq 0 ]; then
|
98 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8 --is_logs
|
99 |
+
python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8 --is_profiler
|
100 |
+
fi
|
101 |
+
|
102 |
+
|
103 |
+
# Push to hub the folder using huggingface_cli
|
104 |
+
huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8 llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8 --commit-message "Upload llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8"
|
105 |
+
|
106 |
+
# Verify the upload
|
107 |
+
if [ $? -eq 0 ]; then
|
108 |
+
echo "Uploading to Huggingface Hub successful"
|
109 |
+
else
|
110 |
+
echo "Failed to upload to Huggingface Hub"
|
111 |
+
fi
|
llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/config.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
general:
|
2 |
+
project: bench_cluster
|
3 |
+
seed: 42
|
4 |
+
model:
|
5 |
+
ddp_bucket_cap_mb: 25
|
6 |
+
dtype: bfloat16
|
7 |
+
init_method:
|
8 |
+
std: 0.025
|
9 |
+
make_vocab_size_divisible_by: 1
|
10 |
+
model_config:
|
11 |
+
bos_token_id: 1
|
12 |
+
eos_token_id: 2
|
13 |
+
hidden_act: silu
|
14 |
+
hidden_size: 2048
|
15 |
+
initializer_range: 0.02
|
16 |
+
intermediate_size: 4096
|
17 |
+
is_llama_config: true
|
18 |
+
max_position_embeddings: 4096
|
19 |
+
num_attention_heads: 32
|
20 |
+
num_hidden_layers: 24
|
21 |
+
num_key_value_heads: 32
|
22 |
+
pad_token_id: null
|
23 |
+
pretraining_tp: 1
|
24 |
+
rms_norm_eps: 1.0e-05
|
25 |
+
rope_scaling: null
|
26 |
+
rope_theta: 10000.0
|
27 |
+
tie_word_embeddings: true
|
28 |
+
use_cache: true
|
29 |
+
vocab_size: 50257
|
30 |
+
optimizer:
|
31 |
+
accumulate_grad_in_fp32: true
|
32 |
+
clip_grad: 1.0
|
33 |
+
learning_rate_scheduler:
|
34 |
+
learning_rate: 0.0001
|
35 |
+
lr_decay_style: linear
|
36 |
+
lr_warmup_style: linear
|
37 |
+
lr_warmup_steps: 1
|
38 |
+
min_decay_lr: 1.0e-05
|
39 |
+
optimizer_factory:
|
40 |
+
adam_beta1: 0.9
|
41 |
+
adam_beta2: 0.95
|
42 |
+
adam_eps: 1.0e-08
|
43 |
+
name: adamW
|
44 |
+
torch_adam_is_fused: true
|
45 |
+
weight_decay: 0.01
|
46 |
+
zero_stage: 1
|
47 |
+
parallelism:
|
48 |
+
dp: 4
|
49 |
+
expert_parallel_size: 1
|
50 |
+
pp: 2
|
51 |
+
pp_engine: 1f1b
|
52 |
+
tp: 1
|
53 |
+
tp_linear_async_communication: false
|
54 |
+
tp_mode: REDUCE_SCATTER
|
55 |
+
profiler:
|
56 |
+
profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8
|
57 |
+
tokenizer:
|
58 |
+
tokenizer_max_length: null
|
59 |
+
tokenizer_name_or_path: openai-community/gpt2
|
60 |
+
tokenizer_revision: null
|
61 |
+
data_stages:
|
62 |
+
- name: Training Stage
|
63 |
+
start_training_step: 1
|
64 |
+
data:
|
65 |
+
dataset:
|
66 |
+
dataset_overwrite_cache: false
|
67 |
+
dataset_processing_num_proc_per_process: 64
|
68 |
+
hf_dataset_config_name: null
|
69 |
+
hf_dataset_or_datasets: roneneldan/TinyStories
|
70 |
+
hf_dataset_splits: train
|
71 |
+
text_column_name: text
|
72 |
+
num_loading_workers: 0
|
73 |
+
seed: 42
|
74 |
+
lighteval: null
|
75 |
+
tokens:
|
76 |
+
train_steps: 20
|
77 |
+
val_check_interval: -1
|
78 |
+
batch_accumulation_per_replica: 32
|
79 |
+
limit_test_batches: 0
|
80 |
+
limit_val_batches: 0
|
81 |
+
micro_batch_size: 8
|
82 |
+
sequence_length: 4096
|
83 |
+
logging:
|
84 |
+
iteration_step_info_interval: 1
|
85 |
+
log_level: info
|
86 |
+
log_level_replica: info
|
87 |
+
checkpoints:
|
88 |
+
checkpoint_interval: 100000
|
89 |
+
checkpoints_path: /dev/null
|
90 |
+
resume_checkpoint_path: null
|
llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/log.out
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
========================
|
2 |
+
START TIME: Thu Jul 4 02:25:23 UTC 2024
|
3 |
+
python3 version = Python 3.10.14
|
4 |
+
========================
|
5 |
+
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
|
6 |
+
Token is valid (permission: write).
|
7 |
+
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
|
8 |
+
Login successful
|
9 |
+
Already on 'bench_cluster'
|
10 |
+
M examples/config_tiny_llama.py
|
11 |
+
M examples/config_tiny_llama.yaml
|
12 |
+
M examples/train_tiny_llama.sh
|
13 |
+
M src/nanotron/models/llama.py
|
14 |
+
M src/nanotron/trainer.py
|
15 |
+
Your branch is up to date with 'origin/bench_cluster'.
|
16 |
+
Job status: RUNNING
|
17 |
+
W0704 02:25:33.312000 140445158446912 torch/distributed/run.py:757]
|
18 |
+
W0704 02:25:33.312000 140445158446912 torch/distributed/run.py:757] *****************************************
|
19 |
+
W0704 02:25:33.312000 140445158446912 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
|
20 |
+
W0704 02:25:33.312000 140445158446912 torch/distributed/run.py:757] *****************************************
|
21 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config:
|
22 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Config(general=GeneralArgs(project='bench_cluster',
|
23 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: run='%date_%jobid',
|
24 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
|
25 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: step=None,
|
26 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: consumed_train_samples=None,
|
27 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: benchmark_csv_path=None,
|
28 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ignore_sanity_checks=True),
|
29 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: parallelism=ParallelismArgs(dp=4,
|
30 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp=2,
|
31 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp=1,
|
32 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f89861d0880>,
|
33 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
|
34 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tp_linear_async_communication=False,
|
35 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: expert_parallel_size=1),
|
36 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
|
37 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
|
38 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
|
39 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
|
40 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
|
41 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
|
42 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
|
43 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
|
44 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
|
45 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
|
46 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
|
47 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
|
48 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
|
49 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
|
50 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
|
51 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
|
52 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
|
53 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
|
54 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50257),
|
55 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: init_method=RandomInit(std=0.025),
|
56 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dtype=torch.bfloat16,
|
57 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: make_vocab_size_divisible_by=1,
|
58 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: ddp_bucket_cap_mb=25),
|
59 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
|
60 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_revision=None,
|
61 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokenizer_max_length=None),
|
62 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
|
63 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoint_interval=100000,
|
64 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: save_initial_state=False,
|
65 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: resume_checkpoint_path=None,
|
66 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: checkpoints_path_is_shared_file_system=False),
|
67 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: logging=LoggingArgs(log_level='info',
|
68 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: log_level_replica='info',
|
69 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: iteration_step_info_interval=1),
|
70 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tokens=TokensArgs(sequence_length=4096,
|
71 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: train_steps=20,
|
72 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: micro_batch_size=8,
|
73 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: batch_accumulation_per_replica=32,
|
74 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: val_check_interval=-1,
|
75 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_val_batches=0,
|
76 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: limit_test_batches=0),
|
77 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
|
78 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta1=0.9,
|
79 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: adam_beta2=0.95,
|
80 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: torch_adam_is_fused=True,
|
81 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: name='adamW'),
|
82 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: zero_stage=1,
|
83 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: weight_decay=0.01,
|
84 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: clip_grad=1.0,
|
85 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: accumulate_grad_in_fp32=True,
|
86 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
|
87 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_steps=1,
|
88 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_warmup_style='linear',
|
89 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_style='linear',
|
90 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_steps=19,
|
91 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lr_decay_starting_step=None,
|
92 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: min_decay_lr=1e-05)),
|
93 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data_stages=[DatasetStageArgs(name='Training Stage',
|
94 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: start_training_step=1,
|
95 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
|
96 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_splits='train',
|
97 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hf_dataset_config_name=None,
|
98 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_processing_num_proc_per_process=64,
|
99 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: dataset_overwrite_cache=False,
|
100 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: text_column_name='text'),
|
101 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: seed=42,
|
102 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_loading_workers=0))],
|
103 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8')),
|
104 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: lighteval=None)
|
105 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Model Config:
|
106 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: LlamaConfig(bos_token_id=1,
|
107 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: eos_token_id=2,
|
108 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_act='silu',
|
109 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: hidden_size=2048,
|
110 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: initializer_range=0.02,
|
111 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: intermediate_size=4096,
|
112 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: is_llama_config=True,
|
113 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: max_position_embeddings=4096,
|
114 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_attention_heads=32,
|
115 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_hidden_layers=24,
|
116 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: num_key_value_heads=32,
|
117 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pad_token_id=None,
|
118 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: pretraining_tp=1,
|
119 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rms_norm_eps=1e-05,
|
120 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_scaling=None,
|
121 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: rope_theta=10000.0,
|
122 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: tie_word_embeddings=True,
|
123 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: use_cache=True,
|
124 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: vocab_size=50257)
|
125 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Building model..
|
126 |
+
[default0]:07/04/2024 02:25:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Setting PP block ranks...
|
127 |
+
[default0]:07/04/2024 02:26:06 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Total number of parameters: 1.21G (2312.82MiB)
|
128 |
+
[default0]:07/04/2024 02:26:06 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Local number of parameters: 690M (1316.43MiB)
|
129 |
+
[default0]:07/04/2024 02:26:06 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 1330.44MiB. Peak allocated: 1332.47MiB Peak reserved: 1364.00MiB
|
130 |
+
[default0]:07/04/2024 02:26:06 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
131 |
+
[default0]:07/04/2024 02:26:06 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Parametrizing model parameters using StandardParametrizator
|
132 |
+
[default4]:07/04/2024 02:26:06 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: Local number of parameters: 522M (996.40MiB)
|
133 |
+
[default4]:07/04/2024 02:26:06 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 1006.41MiB. Peak allocated: 1008.44MiB Peak reserved: 1032.00MiB
|
134 |
+
[default4]:07/04/2024 02:26:06 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
135 |
+
[default1]:07/04/2024 02:26:06 [INFO|DP=1|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
136 |
+
[default2]:07/04/2024 02:26:06 [INFO|DP=2|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
137 |
+
[default5]:07/04/2024 02:26:06 [INFO|DP=1|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
138 |
+
[default6]:07/04/2024 02:26:06 [INFO|DP=2|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
139 |
+
[default3]:07/04/2024 02:26:06 [INFO|DP=3|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
140 |
+
[default7]:07/04/2024 02:26:06 [INFO|DP=3|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided.
|
141 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Optimizer Building] Using LearningRateForSP as learning rate
|
142 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] Size of optimizer params per rank:
|
143 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 0 has 173M out of 690M (25.00%) params' optimizer states
|
144 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 1 has 173M out of 690M (25.00%) params' optimizer states
|
145 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 2 has 173M out of 690M (25.00%) params' optimizer states
|
146 |
+
[default0]:07/04/2024 02:26:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [ZeRO sharding] DP Rank 3 has 173M out of 690M (25.00%) params' optimizer states
|
147 |
+
[default0]:07/04/2024 02:26:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
|
148 |
+
[default0]:07/04/2024 02:26:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Using `datasets` library
|
149 |
+
[default0]:07/04/2024 02:26:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
|
150 |
+
[default0]:07/04/2024 02:26:12 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
151 |
+
[default0]:Repo card metadata block was not found. Setting CardData to empty.
|
152 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Training Plan] There are 1 training stages
|
153 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Stage Training Stage] start from step 1
|
154 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]:
|
155 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: [Start training] datetime: 2024-07-04 02:26:14.736561 | mbs: 8 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
|
156 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
|
157 |
+
[default0]:07/04/2024 02:26:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-88]: Memory usage: 4621.51MiB. Peak allocated 4621.51MiB. Peak reserved: 4658.00MiB
|
158 |
+
[default1]:07/04/2024 02:26:14 [WARNING|DP=1|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
159 |
+
[default4]:07/04/2024 02:26:14 [WARNING|DP=0|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
160 |
+
[default5]:07/04/2024 02:26:14 [WARNING|DP=1|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
161 |
+
[default1]:Repo card metadata block was not found. Setting CardData to empty.
|
162 |
+
[default4]:Repo card metadata block was not found. Setting CardData to empty.
|
163 |
+
[default7]:07/04/2024 02:26:14 [WARNING|DP=3|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
164 |
+
[default5]:Repo card metadata block was not found. Setting CardData to empty.
|
165 |
+
[default7]:Repo card metadata block was not found. Setting CardData to empty.
|
166 |
+
[default2]:07/04/2024 02:26:15 [WARNING|DP=2|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
167 |
+
[default3]:07/04/2024 02:26:14 [WARNING|DP=3|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
168 |
+
[default2]:Repo card metadata block was not found. Setting CardData to empty.
|
169 |
+
[default3]:Repo card metadata block was not found. Setting CardData to empty.
|
170 |
+
[default6]:07/04/2024 02:26:15 [WARNING|DP=2|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
|
171 |
+
[default6]:Repo card metadata block was not found. Setting CardData to empty.
|
172 |
+
[default0]:[rank0]: Traceback (most recent call last):
|
173 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
174 |
+
[default0]:[rank0]: trainer.train(dataloader)
|
175 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
176 |
+
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
177 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
178 |
+
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
|
179 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
180 |
+
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
181 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
182 |
+
[default0]:[rank0]: output = model(**micro_batch)
|
183 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
184 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
185 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
186 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
187 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
188 |
+
[default0]:[rank0]: sharded_logits = self.model(
|
189 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
190 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
191 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
192 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
193 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
194 |
+
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
195 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
196 |
+
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
197 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
198 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
199 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
200 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
201 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
202 |
+
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
|
203 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
204 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
205 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
206 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
207 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
208 |
+
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
209 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
210 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
211 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
212 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
213 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward
|
214 |
+
[default0]:[rank0]: qkv_states = self.qkv_proj(
|
215 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
216 |
+
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
|
217 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
218 |
+
[default0]:[rank0]: return forward_call(*args, **kwargs)
|
219 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
|
220 |
+
[default0]:[rank0]: return column_linear(
|
221 |
+
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
|
222 |
+
[default0]:[rank0]: return F.linear(input, weight, bias)
|
223 |
+
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU
|
224 |
+
[default2]:[rank2]: Traceback (most recent call last):
|
225 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
226 |
+
[default2]:[rank2]: trainer.train(dataloader)
|
227 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
228 |
+
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
229 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
230 |
+
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
|
231 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
232 |
+
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
233 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
234 |
+
[default2]:[rank2]: output = model(**micro_batch)
|
235 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
236 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
237 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
238 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
239 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
240 |
+
[default2]:[rank2]: sharded_logits = self.model(
|
241 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
242 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
243 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
244 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
245 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
246 |
+
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
247 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
248 |
+
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
249 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
250 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
251 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
252 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
253 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
254 |
+
[default2]:[rank2]: output = self.pp_block(**new_kwargs)
|
255 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
256 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
257 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
258 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
259 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
260 |
+
[default2]:[rank2]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
261 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
262 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
263 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
264 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
265 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward
|
266 |
+
[default2]:[rank2]: qkv_states = self.qkv_proj(
|
267 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
268 |
+
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
|
269 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
270 |
+
[default2]:[rank2]: return forward_call(*args, **kwargs)
|
271 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
|
272 |
+
[default2]:[rank2]: return column_linear(
|
273 |
+
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
|
274 |
+
[default2]:[rank2]: return F.linear(input, weight, bias)
|
275 |
+
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU has a total capacity of 79.33 GiB of which 229.94 MiB is free. Including non-PyTorch memory, this process has 79.09 GiB memory in use. Of the allocated memory 66.66 GiB is allocated by PyTorch, and 144.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
276 |
+
[default1]:[rank1]: Traceback (most recent call last):
|
277 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
278 |
+
[default1]:[rank1]: trainer.train(dataloader)
|
279 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
280 |
+
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
281 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
282 |
+
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
|
283 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
284 |
+
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
285 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
286 |
+
[default1]:[rank1]: output = model(**micro_batch)
|
287 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
288 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
289 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
290 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
291 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
292 |
+
[default1]:[rank1]: sharded_logits = self.model(
|
293 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
294 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
295 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
296 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
297 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
298 |
+
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
299 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
300 |
+
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
301 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
302 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
303 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
304 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
305 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
306 |
+
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
|
307 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
308 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
309 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
310 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
311 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
312 |
+
[default1]:[rank1]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
313 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
314 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
315 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
316 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
317 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward
|
318 |
+
[default1]:[rank1]: qkv_states = self.qkv_proj(
|
319 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
320 |
+
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
|
321 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
322 |
+
[default1]:[rank1]: return forward_call(*args, **kwargs)
|
323 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
|
324 |
+
[default1]:[rank1]: return column_linear(
|
325 |
+
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
|
326 |
+
[default1]:[rank1]: return F.linear(input, weight, bias)
|
327 |
+
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU has a total capacity of 79.33 GiB of which 229.94 MiB is free. Including non-PyTorch memory, this process has 79.09 GiB memory in use. Of the allocated memory 66.66 GiB is allocated by PyTorch, and 144.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
328 |
+
[default3]:[rank3]: Traceback (most recent call last):
|
329 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
|
330 |
+
[default3]:[rank3]: trainer.train(dataloader)
|
331 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
|
332 |
+
[default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
|
333 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
|
334 |
+
[default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
|
335 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
|
336 |
+
[default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
|
337 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
|
338 |
+
[default3]:[rank3]: output = model(**micro_batch)
|
339 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
340 |
+
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
|
341 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
342 |
+
[default3]:[rank3]: return forward_call(*args, **kwargs)
|
343 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
|
344 |
+
[default3]:[rank3]: sharded_logits = self.model(
|
345 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
346 |
+
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
|
347 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
348 |
+
[default3]:[rank3]: return forward_call(*args, **kwargs)
|
349 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
|
350 |
+
[default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
|
351 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
|
352 |
+
[default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
|
353 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
354 |
+
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
|
355 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
356 |
+
[default3]:[rank3]: return forward_call(*args, **kwargs)
|
357 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
|
358 |
+
[default3]:[rank3]: output = self.pp_block(**new_kwargs)
|
359 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
360 |
+
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
|
361 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
362 |
+
[default3]:[rank3]: return forward_call(*args, **kwargs)
|
363 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
|
364 |
+
[default3]:[rank3]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
|
365 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
|
366 |
+
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
|
367 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
|
368 |
+
[default3]:[rank3]: return forward_call(*args, **kwargs)
|
369 |
+
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 389, in forward
|
370 |
+
[default3]:[rank3]: .contiguous()
|
371 |
+
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU has a total capacity of 79.33 GiB of which 85.94 MiB is free. Including non-PyTorch memory, this process has 79.23 GiB memory in use. Of the allocated memory 67.03 GiB is allocated by PyTorch, and 144.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
|
372 |
+
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
|
373 |
+
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
374 |
+
W0704 02:26:23.479000 140445158446912 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1142885 closing signal SIGTERM
|
375 |
+
W0704 02:26:23.480000 140445158446912 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1142886 closing signal SIGTERM
|
376 |
+
W0704 02:26:23.480000 140445158446912 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1142887 closing signal SIGTERM
|
377 |
+
W0704 02:26:23.481000 140445158446912 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1142888 closing signal SIGTERM
|
378 |
+
E0704 02:26:24.897000 140445158446912 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1142881) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
|
379 |
+
Traceback (most recent call last):
|
380 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
|
381 |
+
sys.exit(main())
|
382 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
|
383 |
+
return f(*args, **kwargs)
|
384 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
|
385 |
+
run(args)
|
386 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
|
387 |
+
elastic_launch(
|
388 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
|
389 |
+
return launch_agent(self._config, self._entrypoint, list(args))
|
390 |
+
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
|
391 |
+
raise ChildFailedError(
|
392 |
+
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
|
393 |
+
============================================================
|
394 |
+
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
|
395 |
+
------------------------------------------------------------
|
396 |
+
Failures:
|
397 |
+
[1]:
|
398 |
+
time : 2024-07-04_02:26:23
|
399 |
+
host : ip-26-0-171-88.ec2.internal
|
400 |
+
rank : 1 (local_rank: 1)
|
401 |
+
exitcode : 1 (pid: 1142882)
|
402 |
+
error_file: <N/A>
|
403 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
404 |
+
[2]:
|
405 |
+
time : 2024-07-04_02:26:23
|
406 |
+
host : ip-26-0-171-88.ec2.internal
|
407 |
+
rank : 2 (local_rank: 2)
|
408 |
+
exitcode : 1 (pid: 1142883)
|
409 |
+
error_file: <N/A>
|
410 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
411 |
+
[3]:
|
412 |
+
time : 2024-07-04_02:26:23
|
413 |
+
host : ip-26-0-171-88.ec2.internal
|
414 |
+
rank : 3 (local_rank: 3)
|
415 |
+
exitcode : 1 (pid: 1142884)
|
416 |
+
error_file: <N/A>
|
417 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
418 |
+
------------------------------------------------------------
|
419 |
+
Root Cause (first observed failure):
|
420 |
+
[0]:
|
421 |
+
time : 2024-07-04_02:26:23
|
422 |
+
host : ip-26-0-171-88.ec2.internal
|
423 |
+
rank : 0 (local_rank: 0)
|
424 |
+
exitcode : 1 (pid: 1142881)
|
425 |
+
error_file: <N/A>
|
426 |
+
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
|
427 |
+
============================================================
|
428 |
+
srun: error: ip-26-0-171-88: task 0: Exited with exit code 1
|
429 |
+
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|
llama-1B/8_GPUS/dp-4_tp-1_pp-2_mbz-8/status.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
oom
|