======================== START TIME: Tue Jul 2 16:31:55 UTC 2024 python3 version = Python 3.10.14 ======================== The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well. Token is valid (permission: write). Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token Login successful Already on 'bench_cluster' M examples/config_tiny_llama.py M examples/config_tiny_llama.yaml M examples/train_tiny_llama.sh M src/nanotron/models/llama.py M src/nanotron/trainer.py Your branch is up to date with 'origin/bench_cluster'. Job status: RUNNING W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] ***************************************** W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] ***************************************** W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] ***************************************** W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] ***************************************** [default0]:07/02/2024 16:32:15 [WARNING|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Vocab Size Padding] Padded vocab (size: 50257) with 15 dummy tokens (new size: 50272) [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Config: [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Config(general=GeneralArgs(project='bench_cluster', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: run='%date_%jobid', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: seed=42, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: step=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: consumed_train_samples=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: benchmark_csv_path=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: ignore_sanity_checks=True), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: parallelism=ParallelismArgs(dp=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pp=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tp=16, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pp_engine=, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tp_mode=, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tp_linear_async_communication=False, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: expert_parallel_size=1), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: eos_token_id=2, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hidden_act='silu', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hidden_size=2048, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: initializer_range=0.02, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: intermediate_size=4096, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: is_llama_config=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: max_position_embeddings=4096, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_attention_heads=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_hidden_layers=24, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_key_value_heads=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pad_token_id=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pretraining_tp=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rms_norm_eps=1e-05, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rope_scaling=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rope_theta=10000.0, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tie_word_embeddings=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: use_cache=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: vocab_size=50272), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: init_method=RandomInit(std=0.025), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: dtype=torch.bfloat16, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: make_vocab_size_divisible_by=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: ddp_bucket_cap_mb=25), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tokenizer_revision=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tokenizer_max_length=None), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: checkpoint_interval=100000, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: save_initial_state=False, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: resume_checkpoint_path=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: checkpoints_path_is_shared_file_system=False), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: logging=LoggingArgs(log_level='info', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: log_level_replica='info', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: iteration_step_info_interval=1), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tokens=TokensArgs(sequence_length=4096, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: train_steps=20, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: micro_batch_size=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: batch_accumulation_per_replica=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: val_check_interval=-1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: limit_val_batches=0, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: limit_test_batches=0), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: adam_beta1=0.9, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: adam_beta2=0.95, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: torch_adam_is_fused=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: name='adamW'), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: zero_stage=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: weight_decay=0.01, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: clip_grad=1.0, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: accumulate_grad_in_fp32=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lr_warmup_steps=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lr_warmup_style='linear', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lr_decay_style='linear', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lr_decay_steps=19, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lr_decay_starting_step=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: min_decay_lr=1e-05)), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: data_stages=[DatasetStageArgs(name='Training Stage', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: start_training_step=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hf_dataset_splits='train', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hf_dataset_config_name=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: dataset_processing_num_proc_per_process=64, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: dataset_overwrite_cache=False, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: text_column_name='text'), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: seed=42, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_loading_workers=32))], [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-16_pp-1_mbz-32')), [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: lighteval=None) [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Model Config: [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: LlamaConfig(bos_token_id=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: eos_token_id=2, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hidden_act='silu', [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: hidden_size=2048, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: initializer_range=0.02, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: intermediate_size=4096, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: is_llama_config=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: max_position_embeddings=4096, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_attention_heads=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_hidden_layers=24, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: num_key_value_heads=32, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pad_token_id=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: pretraining_tp=1, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rms_norm_eps=1e-05, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rope_scaling=None, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: rope_theta=10000.0, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: tie_word_embeddings=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: use_cache=True, [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: vocab_size=50272) [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Building model.. [default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Setting PP block ranks... [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: No checkpoint path provided. [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: No checkpoint path provided. [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: No checkpoint path provided. [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: No checkpoint path provided. [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: No checkpoint path provided. [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: No checkpoint path provided. [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Total number of parameters: 1.11G (2119.44MiB) [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: No checkpoint path provided. [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Parametrizing model parameters using StandardParametrizator [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Optimizer Building] Using LearningRateForSP as learning rate [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [ZeRO sharding] Size of optimizer params per rank: [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [ZeRO sharding] DP Rank 0 has 69.4M out of 69.4M (100.00%) params' optimizer states [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB) [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: No checkpoint path provided. [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: No checkpoint path provided. [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: No checkpoint path provided. [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: No checkpoint path provided. [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: No checkpoint path provided. [default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: No checkpoint path provided. [default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: No checkpoint path provided. [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: No checkpoint path provided. [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB) [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB [default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: No checkpoint path provided. [default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples [default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Using `datasets` library [default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4') [default0]:07/02/2024 16:32:33 [WARNING|DP=0|PP=0|TP=0|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Training Plan] There are 1 training stages [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Stage Training Stage] start from step 1 [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Start training] datetime: 2024-07-02 16:32:34.409740 | mbs: 32 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0 [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps [default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Memory usage: 689.57MiB. Peak allocated 689.57MiB. Peak reserved: 710.00MiB [default4]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=4|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=2|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=13|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=10|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=9|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=8|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=3|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=1|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default5]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=5|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=7|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=6|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=11|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=14|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=12|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default7]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=15|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded [default7]: [default7]:[rank7]: During handling of the above exception, another exception occurred: [default7]: [default7]:[rank7]: Traceback (most recent call last): [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default7]:[rank7]: trainer.train(dataloader) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter( [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default7]:[rank7]: output = model(**micro_batch) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default7]:[rank7]: sharded_logits = self.model( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default7]:[rank7]: output = self.pp_block(**new_kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward [default7]:[rank7]: hidden_states = self.input_layernorm(hidden_states) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward [default7]:[rank7]: return layer_norm_fn( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn [default7]:[rank7]: return LayerNormFn.apply( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply [default7]:[rank7]: return super().apply(*args, **kwargs) # type: ignore[misc] [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward [default7]:[rank7]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd [default7]:[rank7]: _layer_norm_fwd_1pass_kernel[(M,)]( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in [default7]:[rank7]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run [default7]:[rank7]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in [default7]:[rank7]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench [default7]:[rank7]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench [default7]:[rank7]: fn() [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call [default7]:[rank7]: self.fn.run( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default7]:[rank7]: return self.fn.run(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default7]:[rank7]: return self.fn.run(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default7]:[rank7]: return self.fn.run(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run [default7]:[rank7]: self.cache[device][key] = compile( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile [default7]:[rank7]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put [default7]:[rank7]: with open(temp_path, mode) as f: [default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded [default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded [default4]: [default4]:[rank4]: During handling of the above exception, another exception occurred: [default4]: [default4]:[rank4]: Traceback (most recent call last): [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default4]:[rank4]: trainer.train(dataloader) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter( [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default4]:[rank4]: output = model(**micro_batch) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default4]:[rank4]: sharded_logits = self.model( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default4]:[rank4]: output = self.pp_block(**new_kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward [default4]:[rank4]: hidden_states = self.input_layernorm(hidden_states) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward [default4]:[rank4]: return layer_norm_fn( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn [default4]:[rank4]: return LayerNormFn.apply( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply [default4]:[rank4]: return super().apply(*args, **kwargs) # type: ignore[misc] [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward [default4]:[rank4]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd [default4]:[rank4]: _layer_norm_fwd_1pass_kernel[(M,)]( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in [default4]:[rank4]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run [default4]:[rank4]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in [default4]:[rank4]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench [default4]:[rank4]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench [default4]:[rank4]: fn() [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call [default4]:[rank4]: self.fn.run( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank4]: return self.fn.run(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank4]: return self.fn.run(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank4]: return self.fn.run(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run [default4]:[rank4]: self.cache[device][key] = compile( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile [default4]:[rank4]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put [default4]:[rank4]: with open(temp_path, mode) as f: [default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded [default4]:[rank12]: OSError: [Errno 122] Disk quota exceeded [default4]: [default4]:[rank12]: During handling of the above exception, another exception occurred: [default4]: [default4]:[rank12]: Traceback (most recent call last): [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default4]:[rank12]: trainer.train(dataloader) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default4]:[rank12]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default4]:[rank12]: outputs = self.pipeline_engine.train_batch_iter( [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default4]:[rank12]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default4]:[rank12]: output = model(**micro_batch) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default4]:[rank12]: sharded_logits = self.model( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default4]:[rank12]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default4]:[rank12]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default4]:[rank12]: output = self.pp_block(**new_kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward [default4]:[rank12]: hidden_states = self.input_layernorm(hidden_states) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward [default4]:[rank12]: return layer_norm_fn( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn [default4]:[rank12]: return LayerNormFn.apply( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply [default4]:[rank12]: return super().apply(*args, **kwargs) # type: ignore[misc] [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward [default4]:[rank12]: y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd [default4]:[rank12]: _layer_norm_fwd_1pass_kernel[(M,)]( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in [default4]:[rank12]: return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run [default4]:[rank12]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in [default4]:[rank12]: timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs} [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench [default4]:[rank12]: return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8)) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench [default4]:[rank12]: fn() [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call [default4]:[rank12]: self.fn.run( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank12]: return self.fn.run(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank12]: return self.fn.run(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run [default4]:[rank12]: return self.fn.run(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run [default4]:[rank12]: self.cache[device][key] = compile( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile [default4]:[rank12]: metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}") [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put [default4]:[rank12]: with open(temp_path, mode) as f: [default4]:[rank12]: OSError: [Errno 122] Disk quota exceeded W0702 16:32:48.847000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427255 closing signal SIGTERM W0702 16:32:48.852000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427256 closing signal SIGTERM W0702 16:32:48.854000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427257 closing signal SIGTERM W0702 16:32:48.862000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99623 closing signal SIGTERM W0702 16:32:48.863000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427258 closing signal SIGTERM W0702 16:32:48.866000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99624 closing signal SIGTERM W0702 16:32:48.871000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99625 closing signal SIGTERM W0702 16:32:48.875000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99626 closing signal SIGTERM W0702 16:32:48.878000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99628 closing signal SIGTERM W0702 16:32:48.880000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99629 closing signal SIGTERM W0702 16:32:48.882000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99630 closing signal SIGTERM W0702 16:32:48.891000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427260 closing signal SIGTERM W0702 16:32:48.894000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427261 closing signal SIGTERM E0702 16:32:51.295000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 4 (pid: 2427259) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 Traceback (most recent call last): File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in sys.exit(main()) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper return f(*args, **kwargs) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main run(args) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run elastic_launch( File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2024-07-02_16:32:48 host : ip-26-0-169-239.ec2.internal rank : 7 (local_rank: 7) exitcode : 1 (pid: 2427262) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2024-07-02_16:32:48 host : ip-26-0-169-239.ec2.internal rank : 4 (local_rank: 4) exitcode : 1 (pid: 2427259) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ E0702 16:32:51.480000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 4 (pid: 99627) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 W0702 16:32:51.487000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. W0702 16:32:51.515000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. W0702 16:32:51.525000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. Traceback (most recent call last): File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in sys.exit(main()) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper return f(*args, **kwargs) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main run(args) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run elastic_launch( File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED ------------------------------------------------------------ Failures: ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2024-07-02_16:32:48 host : ip-26-0-169-247.ec2.internal rank : 12 (local_rank: 4) exitcode : 1 (pid: 99627) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ srun: error: ip-26-0-169-239: task 0: Exited with exit code 1 srun: error: ip-26-0-169-247: task 1: Exited with exit code 1 Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.