======================== START TIME: Tue Jul 2 18:37:33 UTC 2024 python3 version = Python 3.10.14 ======================== The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well. Token is valid (permission: write). Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token Login successful Already on 'bench_cluster' M examples/config_tiny_llama.py M examples/config_tiny_llama.yaml M examples/train_tiny_llama.sh M src/nanotron/models/llama.py M src/nanotron/trainer.py Your branch is up to date with 'origin/bench_cluster'. Job status: RUNNING W0702 18:37:36.008000 140534280210240 torch/distributed/run.py:757] W0702 18:37:36.008000 140534280210240 torch/distributed/run.py:757] ***************************************** W0702 18:37:36.008000 140534280210240 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0702 18:37:36.008000 140534280210240 torch/distributed/run.py:757] ***************************************** W0702 18:37:36.037000 140083551221568 torch/distributed/run.py:757] W0702 18:37:36.037000 140083551221568 torch/distributed/run.py:757] ***************************************** W0702 18:37:36.037000 140083551221568 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0702 18:37:36.037000 140083551221568 torch/distributed/run.py:757] ***************************************** [default0]:07/02/2024 18:37:53 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Vocab Size Padding] Padded vocab (size: 50257) with 7 dummy tokens (new size: 50264) [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Config: [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Config(general=GeneralArgs(project='bench_cluster', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: run='%date_%jobid', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: seed=42, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: step=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: consumed_train_samples=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: benchmark_csv_path=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: ignore_sanity_checks=True), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: parallelism=ParallelismArgs(dp=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pp=2, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp=8, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pp_engine=, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp_mode=, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp_linear_async_communication=False, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: expert_parallel_size=1), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: eos_token_id=2, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_act='silu', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_size=2048, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: initializer_range=0.02, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: intermediate_size=4096, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: is_llama_config=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: max_position_embeddings=4096, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_attention_heads=32, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_hidden_layers=24, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_key_value_heads=32, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pad_token_id=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pretraining_tp=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rms_norm_eps=1e-05, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_scaling=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_theta=10000.0, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tie_word_embeddings=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: use_cache=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: vocab_size=50264), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: init_method=RandomInit(std=0.025), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dtype=torch.bfloat16, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: make_vocab_size_divisible_by=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: ddp_bucket_cap_mb=25), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer_revision=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer_max_length=None), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoint_interval=100000, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: save_initial_state=False, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: resume_checkpoint_path=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoints_path_is_shared_file_system=False), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: logging=LoggingArgs(log_level='info', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: log_level_replica='info', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: iteration_step_info_interval=1), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokens=TokensArgs(sequence_length=4096, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: train_steps=20, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: micro_batch_size=128, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: batch_accumulation_per_replica=8, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: val_check_interval=-1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: limit_val_batches=0, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: limit_test_batches=0), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: adam_beta1=0.9, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: adam_beta2=0.95, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: torch_adam_is_fused=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: name='adamW'), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: zero_stage=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: weight_decay=0.01, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: clip_grad=1.0, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: accumulate_grad_in_fp32=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_warmup_steps=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_warmup_style='linear', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_style='linear', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_steps=19, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_starting_step=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: min_decay_lr=1e-05)), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: data_stages=[DatasetStageArgs(name='Training Stage', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: start_training_step=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hf_dataset_splits='train', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hf_dataset_config_name=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dataset_processing_num_proc_per_process=64, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dataset_overwrite_cache=False, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: text_column_name='text'), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: seed=42, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_loading_workers=32))], [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-8_pp-2_mbz-128')), [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lighteval=None) [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Model Config: [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: LlamaConfig(bos_token_id=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: eos_token_id=2, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_act='silu', [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_size=2048, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: initializer_range=0.02, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: intermediate_size=4096, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: is_llama_config=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: max_position_embeddings=4096, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_attention_heads=32, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_hidden_layers=24, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_key_value_heads=32, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pad_token_id=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pretraining_tp=1, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rms_norm_eps=1e-05, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_scaling=None, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_theta=10000.0, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tie_word_embeddings=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: use_cache=True, [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: vocab_size=50264) [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Building model.. [default0]:07/02/2024 18:37:53 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Setting PP block ranks... [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=7|ip-26-0-171-62]: No checkpoint path provided. [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=1|ip-26-0-171-62]: No checkpoint path provided. [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=3|ip-26-0-171-62]: No checkpoint path provided. [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=2|ip-26-0-171-62]: No checkpoint path provided. [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=6|ip-26-0-171-62]: No checkpoint path provided. [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Total number of parameters: 1.21G (2314.22MiB) [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: No checkpoint path provided. [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Parametrizing model parameters using StandardParametrizator [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=4|ip-26-0-171-62]: No checkpoint path provided. [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-62]: Local number of parameters: 86.3M (164.65MiB) [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-62]: [After model building] Memory usage: 179.67MiB. Peak allocated: 181.70MiB Peak reserved: 198.00MiB [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=0|TP=5|ip-26-0-171-62]: No checkpoint path provided. [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=5|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=5|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=2|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=2|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default2]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=2|ip-26-0-171-88]: No checkpoint path provided. [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default5]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=5|ip-26-0-171-88]: No checkpoint path provided. [default1]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=1|ip-26-0-171-88]: No checkpoint path provided. [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=4|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=4|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default4]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=4|ip-26-0-171-88]: No checkpoint path provided. [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=3|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=3|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default3]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=3|ip-26-0-171-88]: No checkpoint path provided. [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default0]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-88]: No checkpoint path provided. [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=7|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=7|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default7]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=7|ip-26-0-171-88]: No checkpoint path provided. [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=6|ip-26-0-171-88]: Local number of parameters: 65.3M (124.62MiB) [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=6|ip-26-0-171-88]: [After model building] Memory usage: 135.64MiB. Peak allocated: 137.67MiB Peak reserved: 150.00MiB [default6]:07/02/2024 18:38:10 [INFO|DP=0|PP=1|TP=6|ip-26-0-171-88]: No checkpoint path provided. [default0]:07/02/2024 18:38:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Optimizer Building] Using LearningRateForSP as learning rate [default0]:07/02/2024 18:38:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [ZeRO sharding] Size of optimizer params per rank: [default0]:07/02/2024 18:38:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [ZeRO sharding] DP Rank 0 has 86.3M out of 86.3M (100.00%) params' optimizer states [default0]:07/02/2024 18:38:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples [default0]:07/02/2024 18:38:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Using `datasets` library [default0]:07/02/2024 18:38:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4') [default0]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/02/2024 18:38:12 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Training Plan] There are 1 training stages [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Stage Training Stage] start from step 1 [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Start training] datetime: 2024-07-02 18:38:13.292505 | mbs: 128 | grad_accum: 8 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0 [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps [default0]:07/02/2024 18:38:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Memory usage: 839.67MiB. Peak allocated 839.67MiB. Peak reserved: 858.00MiB [default7]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=7|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default1]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=1|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=3|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=2|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=6|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=5|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=2|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default4]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=4|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=3|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default7]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=7|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=6|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default4]:07/02/2024 18:38:13 [WARNING|DP=0|PP=0|TP=4|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/02/2024 18:38:13 [WARNING|DP=0|PP=1|TP=5|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default6]:[rank6]: Traceback (most recent call last): [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default6]:[rank6]: trainer.train(dataloader) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter( [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default6]:[rank6]: output = model(**micro_batch) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default6]:[rank6]: sharded_logits = self.model( [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default6]:[rank6]: output = self.pp_block(**new_kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default6]:[rank6]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default6]:[rank6]: qkv_states = self.qkv_proj( [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank6]: return self._call_impl(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank6]: return forward_call(*args, **kwargs) [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default6]:[rank6]: return column_linear( [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default6]:[rank6]: return F.linear(input, weight, bias) [default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 423.94 MiB is free. Including non-PyTorch memory, this process has 78.90 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default1]:[rank1]: Traceback (most recent call last): [default5]:[rank5]: Traceback (most recent call last): [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default5]:[rank5]: trainer.train(dataloader) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default1]:[rank1]: trainer.train(dataloader) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter( [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default1]:[rank1]: output = model(**micro_batch) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default1]:[rank1]: sharded_logits = self.model( [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default1]:[rank1]: output = self.pp_block(**new_kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default1]:[rank1]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default1]:[rank1]: qkv_states = self.qkv_proj( [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank1]: return self._call_impl(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank1]: return forward_call(*args, **kwargs) [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default1]:[rank1]: return column_linear( [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default1]:[rank1]: return F.linear(input, weight, bias) [default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 691.94 MiB is free. Including non-PyTorch memory, this process has 78.64 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter( [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default5]:[rank5]: output = model(**micro_batch) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default5]:[rank5]: sharded_logits = self.model( [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default5]:[rank5]: output = self.pp_block(**new_kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default5]:[rank5]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default5]:[rank5]: qkv_states = self.qkv_proj( [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank5]: return self._call_impl(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank5]: return forward_call(*args, **kwargs) [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default5]:[rank5]: return column_linear( [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default5]:[rank5]: return F.linear(input, weight, bias) [default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 423.94 MiB is free. Including non-PyTorch memory, this process has 78.90 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default3]:[rank3]: Traceback (most recent call last): [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default3]:[rank3]: trainer.train(dataloader) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter( [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default3]:[rank3]: output = model(**micro_batch) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default3]:[rank3]: sharded_logits = self.model( [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default3]:[rank3]: output = self.pp_block(**new_kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default3]:[rank3]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default3]:[rank3]: qkv_states = self.qkv_proj( [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank3]: return self._call_impl(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank3]: return forward_call(*args, **kwargs) [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default3]:[rank3]: return column_linear( [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default3]:[rank3]: return F.linear(input, weight, bias) [default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 551.94 MiB is free. Including non-PyTorch memory, this process has 78.78 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default7]:[rank7]: Traceback (most recent call last): [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default7]:[rank7]: trainer.train(dataloader) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter( [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default7]:[rank7]: output = model(**micro_batch) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default7]:[rank7]: sharded_logits = self.model( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default7]:[rank7]: output = self.pp_block(**new_kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default7]:[rank7]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default7]:[rank7]: qkv_states = self.qkv_proj( [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank7]: return self._call_impl(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank7]: return forward_call(*args, **kwargs) [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default7]:[rank7]: return column_linear( [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default7]:[rank7]: return F.linear(input, weight, bias) [default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 711.94 MiB is free. Including non-PyTorch memory, this process has 78.62 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default2]:[rank2]: Traceback (most recent call last): [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default2]:[rank2]: trainer.train(dataloader) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter( [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default2]:[rank2]: output = model(**micro_batch) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default2]:[rank2]: sharded_logits = self.model( [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default2]:[rank2]: output = self.pp_block(**new_kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default2]:[rank2]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default2]:[rank2]: qkv_states = self.qkv_proj( [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank2]: return self._call_impl(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank2]: return forward_call(*args, **kwargs) [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default2]:[rank2]: return column_linear( [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default2]:[rank2]: return F.linear(input, weight, bias) [default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 581.94 MiB is free. Including non-PyTorch memory, this process has 78.75 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default4]:[rank4]: Traceback (most recent call last): [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default4]:[rank4]: trainer.train(dataloader) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter( [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default4]:[rank4]: output = model(**micro_batch) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default4]:[rank4]: sharded_logits = self.model( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default4]:[rank4]: output = self.pp_block(**new_kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default4]:[rank4]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward [default4]:[rank4]: qkv_states = self.qkv_proj( [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank4]: return self._call_impl(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank4]: return forward_call(*args, **kwargs) [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward [default4]:[rank4]: return column_linear( [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear [default4]:[rank4]: return F.linear(input, weight, bias) [default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU  has a total capacity of 79.33 GiB of which 423.94 MiB is free. Including non-PyTorch memory, this process has 78.90 GiB memory in use. Of the allocated memory 69.43 GiB is allocated by PyTorch, and 422.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) [default0]:[rank0]: Traceback (most recent call last): [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default0]:[rank0]: trainer.train(dataloader) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter( [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 252, in train_batch_iter [default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default0]:[rank0]: output = model(**micro_batch) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank0]: return self._call_impl(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank0]: return forward_call(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default0]:[rank0]: sharded_logits = self.model( [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank0]: return self._call_impl(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank0]: return forward_call(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank0]: return self._call_impl(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank0]: return forward_call(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward [default0]:[rank0]: output = self.pp_block(**new_kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank0]: return self._call_impl(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank0]: return forward_call(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward [default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank0]: return self._call_impl(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank0]: return forward_call(*args, **kwargs) [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 389, in forward [default0]:[rank0]: .contiguous() [default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU [default1]:[rank9]: Traceback (most recent call last): [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default0]:[rank8]: Traceback (most recent call last): [default4]:[rank12]: Traceback (most recent call last): [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default4]:[rank12]: trainer.train(dataloader) [default1]:[rank9]: trainer.train(dataloader) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default1]:[rank9]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default1]:[rank9]: outputs = self.pipeline_engine.train_batch_iter( [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default1]:[rank9]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default1]:[rank9]: output = model(**micro_batch) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank9]: return self._call_impl(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default4]:[rank12]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default6]:[rank14]: Traceback (most recent call last): [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default2]:[rank10]: Traceback (most recent call last): [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default0]:[rank8]: trainer.train(dataloader) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default1]:[rank9]: return forward_call(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default1]:[rank9]: sharded_logits = self.model( [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank9]: return self._call_impl(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank9]: return forward_call(*args, **kwargs) [default2]:[rank10]: trainer.train(dataloader) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default2]:[rank10]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default2]:[rank10]: outputs = self.pipeline_engine.train_batch_iter( [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default2]:[rank10]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default2]:[rank10]: output = model(**micro_batch) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank10]: return self._call_impl(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank10]: return forward_call(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default2]:[rank10]: sharded_logits = self.model( [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank10]: return self._call_impl(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank10]: return forward_call(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default2]:[rank10]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default2]:[rank10]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default2]:[rank10]: return self._call_impl(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default2]:[rank10]: return forward_call(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default2]:[rank10]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default2]:[rank10]: pipeline_state.run_communication() [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default2]:[rank10]: recv_activation_tensor = recv_activation() [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default2]:[rank10]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default2]:[rank10]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default2]:[rank10]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default2]:[rank10]: dist.recv( [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default2]:[rank10]: return func(*args, **kwargs) [default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default2]:[rank10]: pg.recv([tensor], group_src_rank, tag).wait() [default2]:[rank10]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default2]:[rank10]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default2]:[rank10]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f2cfe06a897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default2]:[rank10]: frame #1: + 0x5b3a23e (0x7f2d37b8723e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f2d37b81c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f2d37b81f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f2d37b82fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2d37b37371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2d37b37371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2d37b37371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2d37b37371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f2cff344189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default2]:[rank10]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f2cff34b610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default2]:[rank10]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f2cff36a978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default2]:[rank10]: frame #12: + 0x5adc309 (0x7f2d37b29309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #13: + 0x5ae6f10 (0x7f2d37b33f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #14: + 0x5ae6fa5 (0x7f2d37b33fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: outputs = self.pipeline_engine.train_batch_iter( [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default4]:[rank12]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default4]:[rank12]: output = model(**micro_batch) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default4]:[rank12]: sharded_logits = self.model( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default4]:[rank12]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default4]:[rank12]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default7]:[rank15]: Traceback (most recent call last): [default2]:[rank10]: frame #15: + 0x5124446 (0x7f2d37171446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #16: + 0x1acf4b8 (0x7f2d33b1c4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #17: + 0x5aee004 (0x7f2d37b3b004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #18: + 0x5af36b5 (0x7f2d37b406b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default2]:[rank10]: frame #19: + 0xd2631e (0x7f2d4a72a31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default2]:[rank10]: frame #20: + 0x47def4 (0x7f2d49e81ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default2]:[rank10]: frame #21: + 0x1445a6 (0x558c551be5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #22: _PyObject_MakeTpCall + 0x26b (0x558c551b7a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #23: + 0x150866 (0x558c551ca866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x558c551b3142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #25: _PyFunction_Vectorcall + 0x6c (0x558c551bea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #26: PyObject_Call + 0xbc (0x558c551caf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x558c551b12b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #28: _PyFunction_Vectorcall + 0x6c (0x558c551bea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #30: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #32: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #34: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x558c551b6f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #37: _PyObject_Call_Prepend + 0x69 (0x558c551c8c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #38: + 0x211239 (0x558c5528b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #39: _PyObject_MakeTpCall + 0x26b (0x558c551b7a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x558c551b33e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #41: _PyFunction_Vectorcall + 0x6c (0x558c551bea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x558c551aec5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #43: _PyFunction_Vectorcall + 0x6c (0x558c551bea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #45: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #46: PyObject_Call + 0xbc (0x558c551caf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x558c551b12b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #48: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #49: PyObject_Call + 0xbc (0x558c551caf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x558c551b12b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #51: _PyFunction_Vectorcall + 0x6c (0x558c551bea2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x558c551b7007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #53: _PyObject_Call_Prepend + 0x69 (0x558c551c8c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #54: + 0x211239 (0x558c5528b239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #55: PyObject_Call + 0x207 (0x558c551cb067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x558c551b12b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #57: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x558c551af8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #59: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #60: PyObject_Call + 0xbc (0x558c551caf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x558c551b12b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #62: + 0x150582 (0x558c551ca582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: frame #63: PyObject_Call + 0xbc (0x558c551caf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default2]:[rank10]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default4]:[rank12]: return self._call_impl(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default4]:[rank12]: return forward_call(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default4]:[rank12]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default4]:[rank12]: pipeline_state.run_communication() [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default4]:[rank12]: recv_activation_tensor = recv_activation() [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default4]:[rank12]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default4]:[rank12]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default4]:[rank12]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default4]:[rank12]: dist.recv( [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default4]:[rank12]: return func(*args, **kwargs) [default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default4]:[rank12]: pg.recv([tensor], group_src_rank, tag).wait() [default4]:[rank12]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default4]:[rank12]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default4]:[rank12]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f564e7f0897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default4]:[rank12]: frame #1: + 0x5b3a23e (0x7f568830d23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f5688307c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f5688307f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f5688308fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f56882bd371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f56882bd371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f56882bd371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f56882bd371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f564faca189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default4]:[rank12]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f564fad1610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default4]:[rank12]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f564faf0978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default4]:[rank12]: frame #12: + 0x5adc309 (0x7f56882af309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #13: + 0x5ae6f10 (0x7f56882b9f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #14: + 0x5ae6fa5 (0x7f56882b9fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #15: + 0x5124446 (0x7f56878f7446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #16: + 0x1acf4b8 (0x7f56842a24b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #17: + 0x5aee004 (0x7f56882c1004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #18: + 0x5af36b5 (0x7f56882c66b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default4]:[rank12]: frame #19: + 0xd2631e (0x7f569aeb031e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default4]:[rank12]: frame #20: + 0x47def4 (0x7f569a607ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default4]:[rank12]: frame #21: + 0x1445a6 (0x55892a7da5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55892a7d3a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #23: + 0x150866 (0x55892a7e6866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55892a7cf142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55892a7daa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #26: PyObject_Call + 0xbc (0x55892a7e6f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55892a7cd2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55892a7daa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #30: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #32: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #34: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55892a7d2f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55892a7e4c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #38: + 0x211239 (0x55892a8a7239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55892a7d3a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55892a7cf3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55892a7daa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55892a7cac5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55892a7daa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #45: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #46: PyObject_Call + 0xbc (0x55892a7e6f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55892a7cd2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #48: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #49: PyObject_Call + 0xbc (0x55892a7e6f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55892a7cd2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55892a7daa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55892a7d3007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55892a7e4c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #54: + 0x211239 (0x55892a8a7239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #55: PyObject_Call + 0x207 (0x55892a7e7067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55892a7cd2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #57: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55892a7cb8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #59: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #60: PyObject_Call + 0xbc (0x55892a7e6f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55892a7cd2b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #62: + 0x150582 (0x55892a7e6582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: frame #63: PyObject_Call + 0xbc (0x55892a7e6f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default4]:[rank12]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default6]:[rank14]: trainer.train(dataloader) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default6]:[rank14]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default6]:[rank14]: outputs = self.pipeline_engine.train_batch_iter( [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default6]:[rank14]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default6]:[rank14]: output = model(**micro_batch) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank14]: return self._call_impl(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank14]: return forward_call(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default6]:[rank14]: sharded_logits = self.model( [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank14]: return self._call_impl(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank14]: return forward_call(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default6]:[rank14]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default6]:[rank14]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default6]:[rank14]: return self._call_impl(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default6]:[rank14]: return forward_call(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default6]:[rank14]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default6]:[rank14]: pipeline_state.run_communication() [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default6]:[rank14]: recv_activation_tensor = recv_activation() [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default6]:[rank14]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default6]:[rank14]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default6]:[rank14]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default6]:[rank14]: dist.recv( [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default6]:[rank14]: return func(*args, **kwargs) [default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default6]:[rank14]: pg.recv([tensor], group_src_rank, tag).wait() [default6]:[rank14]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default6]:[rank14]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default6]:[rank14]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f165795c897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default6]:[rank14]: frame #1: + 0x5b3a23e (0x7f169147923e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f1691473c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f1691473f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f1691474fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f1691429371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f1691429371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f1691429371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f1691429371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f1658c36189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default6]:[rank14]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f1658c3d610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default6]:[rank14]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f1658c5c978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default6]:[rank14]: frame #12: + 0x5adc309 (0x7f169141b309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #13: + 0x5ae6f10 (0x7f1691425f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #14: + 0x5ae6fa5 (0x7f1691425fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #15: + 0x5124446 (0x7f1690a63446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #16: + 0x1acf4b8 (0x7f168d40e4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #17: + 0x5aee004 (0x7f169142d004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #18: + 0x5af36b5 (0x7f16914326b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default6]:[rank14]: frame #19: + 0xd2631e (0x7f16a401c31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default6]:[rank14]: frame #20: + 0x47def4 (0x7f16a3773ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default6]:[rank14]: frame #21: + 0x1445a6 (0x55e05868d5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #22: _PyObject_MakeTpCall + 0x26b (0x55e058686a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #23: + 0x150866 (0x55e058699866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x55e058682142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #25: _PyFunction_Vectorcall + 0x6c (0x55e05868da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #26: PyObject_Call + 0xbc (0x55e058699f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x55e0586802b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #28: _PyFunction_Vectorcall + 0x6c (0x55e05868da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #30: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #32: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #34: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x55e058685f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #37: _PyObject_Call_Prepend + 0x69 (0x55e058697c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #38: + 0x211239 (0x55e05875a239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #39: _PyObject_MakeTpCall + 0x26b (0x55e058686a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x55e0586823e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #41: _PyFunction_Vectorcall + 0x6c (0x55e05868da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x55e05867dc5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #43: _PyFunction_Vectorcall + 0x6c (0x55e05868da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #45: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #46: PyObject_Call + 0xbc (0x55e058699f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x55e0586802b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #48: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #49: PyObject_Call + 0xbc (0x55e058699f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x55e0586802b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #51: _PyFunction_Vectorcall + 0x6c (0x55e05868da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x55e058686007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #53: _PyObject_Call_Prepend + 0x69 (0x55e058697c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #54: + 0x211239 (0x55e05875a239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #55: PyObject_Call + 0x207 (0x55e05869a067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x55e0586802b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #57: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x55e05867e8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #59: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #60: PyObject_Call + 0xbc (0x55e058699f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x55e0586802b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #62: + 0x150582 (0x55e058699582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: frame #63: PyObject_Call + 0xbc (0x55e058699f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default6]:[rank14]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default7]:[rank15]: trainer.train(dataloader) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default7]:[rank15]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default7]:[rank15]: outputs = self.pipeline_engine.train_batch_iter( [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default1]:[rank9]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default1]:[rank9]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default1]:[rank9]: return self._call_impl(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default1]:[rank9]: return forward_call(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default1]:[rank9]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default1]:[rank9]: pipeline_state.run_communication() [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default1]:[rank9]: recv_activation_tensor = recv_activation() [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default1]:[rank9]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default1]:[rank9]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default1]:[rank9]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default1]:[rank9]: dist.recv( [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default1]:[rank9]: return func(*args, **kwargs) [default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default1]:[rank9]: pg.recv([tensor], group_src_rank, tag).wait() [default1]:[rank9]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default1]:[rank9]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default1]:[rank9]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7fc8d03bd897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default1]:[rank9]: frame #1: + 0x5b3a23e (0x7fc909eda23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7fc909ed4c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7fc909ed4f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7fc909ed5fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fc909e8a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fc909e8a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fc909e8a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7fc909e8a371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7fc8d1697189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default1]:[rank9]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7fc8d169e610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default1]:[rank9]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7fc8d16bd978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default1]:[rank9]: frame #12: + 0x5adc309 (0x7fc909e7c309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #13: + 0x5ae6f10 (0x7fc909e86f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #14: + 0x5ae6fa5 (0x7fc909e86fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #15: + 0x5124446 (0x7fc9094c4446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #16: + 0x1acf4b8 (0x7fc905e6f4b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #17: + 0x5aee004 (0x7fc909e8e004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #18: + 0x5af36b5 (0x7fc909e936b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default1]:[rank9]: frame #19: + 0xd2631e (0x7fc91ca7d31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default1]:[rank9]: frame #20: + 0x47def4 (0x7fc91c1d4ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default1]:[rank9]: frame #21: + 0x1445a6 (0x563129c0d5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #22: _PyObject_MakeTpCall + 0x26b (0x563129c06a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #23: + 0x150866 (0x563129c19866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x563129c02142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #25: _PyFunction_Vectorcall + 0x6c (0x563129c0da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #26: PyObject_Call + 0xbc (0x563129c19f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x563129c002b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #28: _PyFunction_Vectorcall + 0x6c (0x563129c0da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #30: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #32: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #34: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x563129c05f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #37: _PyObject_Call_Prepend + 0x69 (0x563129c17c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #38: + 0x211239 (0x563129cda239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #39: _PyObject_MakeTpCall + 0x26b (0x563129c06a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x563129c023e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #41: _PyFunction_Vectorcall + 0x6c (0x563129c0da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x563129bfdc5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #43: _PyFunction_Vectorcall + 0x6c (0x563129c0da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #45: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #46: PyObject_Call + 0xbc (0x563129c19f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x563129c002b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #48: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #49: PyObject_Call + 0xbc (0x563129c19f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x563129c002b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #51: _PyFunction_Vectorcall + 0x6c (0x563129c0da2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x563129c06007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #53: _PyObject_Call_Prepend + 0x69 (0x563129c17c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #54: + 0x211239 (0x563129cda239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #55: PyObject_Call + 0x207 (0x563129c1a067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x563129c002b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #57: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x563129bfe8fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #59: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #60: PyObject_Call + 0xbc (0x563129c19f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x563129c002b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #62: + 0x150582 (0x563129c19582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: frame #63: PyObject_Call + 0xbc (0x563129c19f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default1]:[rank9]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default3]:[rank11]: Traceback (most recent call last): [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default3]:[rank11]: trainer.train(dataloader) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default3]:[rank11]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default3]:[rank11]: outputs = self.pipeline_engine.train_batch_iter( [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default3]:[rank11]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default3]:[rank11]: output = model(**micro_batch) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank11]: return self._call_impl(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank11]: return forward_call(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default3]:[rank11]: sharded_logits = self.model( [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank11]: return self._call_impl(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank11]: return forward_call(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default3]:[rank11]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default3]:[rank11]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default3]:[rank11]: return self._call_impl(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default3]:[rank11]: return forward_call(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default3]:[rank11]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default3]:[rank11]: pipeline_state.run_communication() [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default3]:[rank11]: recv_activation_tensor = recv_activation() [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default3]:[rank11]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default3]:[rank11]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default3]:[rank11]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default3]:[rank11]: dist.recv( [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default3]:[rank11]: return func(*args, **kwargs) [default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default3]:[rank11]: pg.recv([tensor], group_src_rank, tag).wait() [default3]:[rank11]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default3]:[rank11]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default3]:[rank11]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f2a397de897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default3]:[rank11]: frame #1: + 0x5b3a23e (0x7f2a732fb23e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f2a732f5c87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f2a732f5f82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f2a732f6fd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2a732ab371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2a732ab371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2a732ab371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f2a732ab371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f2a3aab8189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default3]:[rank11]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f2a3aabf610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default3]:[rank11]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f2a3aade978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default3]:[rank11]: frame #12: + 0x5adc309 (0x7f2a7329d309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #13: + 0x5ae6f10 (0x7f2a732a7f10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #14: + 0x5ae6fa5 (0x7f2a732a7fa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #15: + 0x5124446 (0x7f2a728e5446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #16: + 0x1acf4b8 (0x7f2a6f2904b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #17: + 0x5aee004 (0x7f2a732af004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #18: + 0x5af36b5 (0x7f2a732b46b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default3]:[rank11]: frame #19: + 0xd2631e (0x7f2a85e9e31e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default3]:[rank11]: frame #20: + 0x47def4 (0x7f2a855f5ef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default3]:[rank11]: frame #21: + 0x1445a6 (0x557c764165a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #22: _PyObject_MakeTpCall + 0x26b (0x557c7640fa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #23: + 0x150866 (0x557c76422866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x557c7640b142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #25: _PyFunction_Vectorcall + 0x6c (0x557c76416a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #26: PyObject_Call + 0xbc (0x557c76422f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x557c764092b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #28: _PyFunction_Vectorcall + 0x6c (0x557c76416a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #30: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #32: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #34: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x557c7640ef50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #37: _PyObject_Call_Prepend + 0x69 (0x557c76420c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #38: + 0x211239 (0x557c764e3239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #39: _PyObject_MakeTpCall + 0x26b (0x557c7640fa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x557c7640b3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #41: _PyFunction_Vectorcall + 0x6c (0x557c76416a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x557c76406c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #43: _PyFunction_Vectorcall + 0x6c (0x557c76416a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #45: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #46: PyObject_Call + 0xbc (0x557c76422f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x557c764092b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #48: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #49: PyObject_Call + 0xbc (0x557c76422f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x557c764092b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #51: _PyFunction_Vectorcall + 0x6c (0x557c76416a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x557c7640f007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #53: _PyObject_Call_Prepend + 0x69 (0x557c76420c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #54: + 0x211239 (0x557c764e3239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #55: PyObject_Call + 0x207 (0x557c76423067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x557c764092b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #57: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x557c764078fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #59: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #60: PyObject_Call + 0xbc (0x557c76422f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x557c764092b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #62: + 0x150582 (0x557c76422582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: frame #63: PyObject_Call + 0xbc (0x557c76422f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default3]:[rank11]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter( [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default0]:[rank8]: output = model(**micro_batch) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank8]: return self._call_impl(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank8]: return forward_call(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default0]:[rank8]: sharded_logits = self.model( [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank8]: return self._call_impl(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank8]: return forward_call(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default0]:[rank8]: return self._call_impl(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default0]:[rank8]: return forward_call(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default0]:[rank8]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default0]:[rank8]: pipeline_state.run_communication() [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default0]:[rank8]: recv_activation_tensor = recv_activation() [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default0]:[rank8]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default0]:[rank8]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default0]:[rank8]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default0]:[rank8]: dist.recv( [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default0]:[rank8]: return func(*args, **kwargs) [default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default0]:[rank8]: pg.recv([tensor], group_src_rank, tag).wait() [default0]:[rank8]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default0]:[rank8]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default0]:[rank8]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f6108763897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default0]:[rank8]: frame #1: + 0x5b3a23e (0x7f614228023e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f614227ac87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f614227af82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f614227bfd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6142230371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6142230371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6142230371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6142230371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f6109a3d189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default0]:[rank8]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f6109a44610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default0]:[rank8]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f6109a63978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default0]:[rank8]: frame #12: + 0x5adc309 (0x7f6142222309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #13: + 0x5ae6f10 (0x7f614222cf10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #14: + 0x5ae6fa5 (0x7f614222cfa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #15: + 0x5124446 (0x7f614186a446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #16: + 0x1acf4b8 (0x7f613e2154b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #17: + 0x5aee004 (0x7f6142234004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #18: + 0x5af36b5 (0x7f61422396b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default0]:[rank8]: frame #19: + 0xd2631e (0x7f6154e2331e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default0]:[rank8]: frame #20: + 0x47def4 (0x7f615457aef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default0]:[rank8]: frame #21: + 0x1445a6 (0x559ec346f5a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #22: _PyObject_MakeTpCall + 0x26b (0x559ec3468a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #23: + 0x150866 (0x559ec347b866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x559ec3464142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #25: _PyFunction_Vectorcall + 0x6c (0x559ec346fa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #26: PyObject_Call + 0xbc (0x559ec347bf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x559ec34622b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #28: _PyFunction_Vectorcall + 0x6c (0x559ec346fa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #30: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #32: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #34: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x559ec3467f50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #37: _PyObject_Call_Prepend + 0x69 (0x559ec3479c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #38: + 0x211239 (0x559ec353c239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #39: _PyObject_MakeTpCall + 0x26b (0x559ec3468a6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x559ec34643e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #41: _PyFunction_Vectorcall + 0x6c (0x559ec346fa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x559ec345fc5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #43: _PyFunction_Vectorcall + 0x6c (0x559ec346fa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #45: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #46: PyObject_Call + 0xbc (0x559ec347bf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x559ec34622b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #48: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #49: PyObject_Call + 0xbc (0x559ec347bf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x559ec34622b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #51: _PyFunction_Vectorcall + 0x6c (0x559ec346fa2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x559ec3468007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #53: _PyObject_Call_Prepend + 0x69 (0x559ec3479c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #54: + 0x211239 (0x559ec353c239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #55: PyObject_Call + 0x207 (0x559ec347c067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x559ec34622b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #57: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x559ec34608fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #59: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #60: PyObject_Call + 0xbc (0x559ec347bf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x559ec34622b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #62: + 0x150582 (0x559ec347b582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: frame #63: PyObject_Call + 0xbc (0x559ec347bf1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default0]:[rank8]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default7]:[rank15]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default7]:[rank15]: output = model(**micro_batch) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank15]: return self._call_impl(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank15]: return forward_call(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default7]:[rank15]: sharded_logits = self.model( [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank15]: return self._call_impl(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank15]: return forward_call(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default7]:[rank15]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default7]:[rank15]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default7]:[rank15]: return self._call_impl(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default7]:[rank15]: return forward_call(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default7]:[rank15]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default7]:[rank15]: pipeline_state.run_communication() [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default7]:[rank15]: recv_activation_tensor = recv_activation() [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default7]:[rank15]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default7]:[rank15]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default7]:[rank15]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default7]:[rank15]: dist.recv( [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default7]:[rank15]: return func(*args, **kwargs) [default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default7]:[rank15]: pg.recv([tensor], group_src_rank, tag).wait() [default7]:[rank15]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default7]:[rank15]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default7]:[rank15]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f6e8a343897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default7]:[rank15]: frame #1: + 0x5b3a23e (0x7f6ec3e6023e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7f6ec3e5ac87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7f6ec3e5af82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7f6ec3e5bfd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6ec3e10371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6ec3e10371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6ec3e10371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7f6ec3e10371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7f6e8b61d189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default7]:[rank15]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7f6e8b624610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default7]:[rank15]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7f6e8b643978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default7]:[rank15]: frame #12: + 0x5adc309 (0x7f6ec3e02309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #13: + 0x5ae6f10 (0x7f6ec3e0cf10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #14: + 0x5ae6fa5 (0x7f6ec3e0cfa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #15: + 0x5124446 (0x7f6ec344a446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #16: + 0x1acf4b8 (0x7f6ebfdf54b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #17: + 0x5aee004 (0x7f6ec3e14004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #18: + 0x5af36b5 (0x7f6ec3e196b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default7]:[rank15]: frame #19: + 0xd2631e (0x7f6ed6a0331e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default7]:[rank15]: frame #20: + 0x47def4 (0x7f6ed615aef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default7]:[rank15]: frame #21: + 0x1445a6 (0x5633726b65a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #22: _PyObject_MakeTpCall + 0x26b (0x5633726afa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #23: + 0x150866 (0x5633726c2866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x5633726ab142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #25: _PyFunction_Vectorcall + 0x6c (0x5633726b6a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #26: PyObject_Call + 0xbc (0x5633726c2f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x5633726a92b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #28: _PyFunction_Vectorcall + 0x6c (0x5633726b6a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #30: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #32: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #34: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x5633726aef50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #37: _PyObject_Call_Prepend + 0x69 (0x5633726c0c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #38: + 0x211239 (0x563372783239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #39: _PyObject_MakeTpCall + 0x26b (0x5633726afa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x5633726ab3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #41: _PyFunction_Vectorcall + 0x6c (0x5633726b6a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x5633726a6c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #43: _PyFunction_Vectorcall + 0x6c (0x5633726b6a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #45: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #46: PyObject_Call + 0xbc (0x5633726c2f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x5633726a92b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #48: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #49: PyObject_Call + 0xbc (0x5633726c2f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x5633726a92b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #51: _PyFunction_Vectorcall + 0x6c (0x5633726b6a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x5633726af007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #53: _PyObject_Call_Prepend + 0x69 (0x5633726c0c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #54: + 0x211239 (0x563372783239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #55: PyObject_Call + 0x207 (0x5633726c3067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x5633726a92b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #57: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x5633726a78fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #59: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #60: PyObject_Call + 0xbc (0x5633726c2f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x5633726a92b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #62: + 0x150582 (0x5633726c2582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: frame #63: PyObject_Call + 0xbc (0x5633726c2f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default7]:[rank15]: . This may indicate a possible application crash on rank 0 or a network set up issue. [default5]:[rank13]: Traceback (most recent call last): [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in [default5]:[rank13]: trainer.train(dataloader) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train [default5]:[rank13]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step [default5]:[rank13]: outputs = self.pipeline_engine.train_batch_iter( [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter [default5]:[rank13]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward [default5]:[rank13]: output = model(**micro_batch) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank13]: return self._call_impl(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank13]: return forward_call(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward [default5]:[rank13]: sharded_logits = self.model( [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank13]: return self._call_impl(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank13]: return forward_call(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward [default5]:[rank13]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0] [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states [default5]:[rank13]: hidden_encoder_states = encoder_block(**hidden_encoder_states) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl [default5]:[rank13]: return self._call_impl(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl [default5]:[rank13]: return forward_call(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward [default5]:[rank13]: new_kwargs[name] = recv_from_pipeline_state_buffer( [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer [default5]:[rank13]: pipeline_state.run_communication() [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 150, in run_communication [default5]:[rank13]: recv_activation_tensor = recv_activation() [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 31, in __call__ [default5]:[rank13]: return self.p2p.recv_tensors(num_tensors=1, from_rank=self.from_rank)[0] [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 353, in recv_tensors [default5]:[rank13]: buffers, futures = self.irecv_tensors(num_tensors=num_tensors, from_rank=from_rank, tag=tag) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 326, in irecv_tensors [default5]:[rank13]: meta = self._recv_meta(from_rank=from_rank, tag=tag) [default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 246, in _recv_meta [default5]:[rank13]: dist.recv( [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper [default5]:[rank13]: return func(*args, **kwargs) [default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1932, in recv [default5]:[rank13]: pg.recv([tensor], group_src_rank, tag).wait() [default5]:[rank13]: torch.distributed.DistBackendError: [1] is setting up NCCL communicator and retrieving ncclUniqueId from [0] via c10d key-value store by key '0:1', but store->get('0:1') got error: Connection reset by peer [default5]:[rank13]: Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first): [default5]:[rank13]: frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7efeff735897 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libc10.so) [default5]:[rank13]: frame #1: + 0x5b3a23e (0x7eff3925223e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #2: c10d::TCPStore::doWait(c10::ArrayRef, std::chrono::duration >) + 0x2c7 (0x7eff3924cc87 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7eff3924cf82 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7eff3924dfd1 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7eff39202371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7eff39202371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7eff39202371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #8: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7eff39202371 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #9: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7eff00a0f189 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default5]:[rank13]: frame #10: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7eff00a16610 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default5]:[rank13]: frame #11: c10d::ProcessGroupNCCL::recv(std::vector >&, int, int) + 0x5f8 (0x7eff00a35978 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so) [default5]:[rank13]: frame #12: + 0x5adc309 (0x7eff391f4309 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #13: + 0x5ae6f10 (0x7eff391fef10 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #14: + 0x5ae6fa5 (0x7eff391fefa5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #15: + 0x5124446 (0x7eff3883c446 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #16: + 0x1acf4b8 (0x7eff351e74b8 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #17: + 0x5aee004 (0x7eff39206004 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #18: + 0x5af36b5 (0x7eff3920b6b5 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) [default5]:[rank13]: frame #19: + 0xd2631e (0x7eff4bdf531e in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default5]:[rank13]: frame #20: + 0x47def4 (0x7eff4b54cef4 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/lib/libtorch_python.so) [default5]:[rank13]: frame #21: + 0x1445a6 (0x555ed31265a6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #22: _PyObject_MakeTpCall + 0x26b (0x555ed311fa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #23: + 0x150866 (0x555ed3132866 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #24: _PyEval_EvalFrameDefault + 0x4c12 (0x555ed311b142 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #25: _PyFunction_Vectorcall + 0x6c (0x555ed3126a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #26: PyObject_Call + 0xbc (0x555ed3132f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #27: _PyEval_EvalFrameDefault + 0x2d83 (0x555ed31192b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #28: _PyFunction_Vectorcall + 0x6c (0x555ed3126a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #29: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #30: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #31: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #32: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #33: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #34: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #35: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #36: _PyObject_FastCallDictTstate + 0xd0 (0x555ed311ef50 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #37: _PyObject_Call_Prepend + 0x69 (0x555ed3130c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #38: + 0x211239 (0x555ed31f3239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #39: _PyObject_MakeTpCall + 0x26b (0x555ed311fa6b in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #40: _PyEval_EvalFrameDefault + 0x4eb6 (0x555ed311b3e6 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #41: _PyFunction_Vectorcall + 0x6c (0x555ed3126a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #42: _PyEval_EvalFrameDefault + 0x72c (0x555ed3116c5c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #43: _PyFunction_Vectorcall + 0x6c (0x555ed3126a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #44: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #45: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #46: PyObject_Call + 0xbc (0x555ed3132f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #47: _PyEval_EvalFrameDefault + 0x2d83 (0x555ed31192b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #48: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #49: PyObject_Call + 0xbc (0x555ed3132f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #50: _PyEval_EvalFrameDefault + 0x2d83 (0x555ed31192b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #51: _PyFunction_Vectorcall + 0x6c (0x555ed3126a2c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #52: _PyObject_FastCallDictTstate + 0x187 (0x555ed311f007 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #53: _PyObject_Call_Prepend + 0x69 (0x555ed3130c39 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #54: + 0x211239 (0x555ed31f3239 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #55: PyObject_Call + 0x207 (0x555ed3133067 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #56: _PyEval_EvalFrameDefault + 0x2d83 (0x555ed31192b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #57: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #58: _PyEval_EvalFrameDefault + 0x13ca (0x555ed31178fa in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #59: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #60: PyObject_Call + 0xbc (0x555ed3132f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #61: _PyEval_EvalFrameDefault + 0x2d83 (0x555ed31192b3 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #62: + 0x150582 (0x555ed3132582 in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: frame #63: PyObject_Call + 0xbc (0x555ed3132f1c in /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10) [default5]:[rank13]: . This may indicate a possible application crash on rank 0 or a network set up issue. E0702 18:38:32.242000 140534280210240 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 3669547) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 Traceback (most recent call last): File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in sys.exit(main()) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper return f(*args, **kwargs) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main run(args) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run elastic_launch( File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 1 (local_rank: 1) exitcode : 1 (pid: 3669548) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 2 (local_rank: 2) exitcode : 1 (pid: 3669549) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 3 (local_rank: 3) exitcode : 1 (pid: 3669550) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [4]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 4 (local_rank: 4) exitcode : 1 (pid: 3669551) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [5]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 5 (local_rank: 5) exitcode : 1 (pid: 3669552) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [6]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 6 (local_rank: 6) exitcode : 1 (pid: 3669553) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [7]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 7 (local_rank: 7) exitcode : 1 (pid: 3669554) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2024-07-02_18:38:32 host : ip-26-0-171-62.ec2.internal rank : 0 (local_rank: 0) exitcode : 1 (pid: 3669547) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ srun: error: ip-26-0-171-62: task 0: Exited with exit code 1 W0702 18:38:36.144000 140077884401408 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-171-88.ec2.internal_657813_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError. E0702 18:38:37.255000 140083551221568 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 657881) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10 W0702 18:38:37.261000 140083551221568 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-88.ec2.internal_657813_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. W0702 18:38:37.287000 140083551221568 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-88.ec2.internal_657813_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. W0702 18:38:37.315000 140083551221568 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-88.ec2.internal_657813_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. Traceback (most recent call last): File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in sys.exit(main()) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper return f(*args, **kwargs) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main run(args) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run elastic_launch( File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 9 (local_rank: 1) exitcode : 1 (pid: 657882) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 10 (local_rank: 2) exitcode : 1 (pid: 657883) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 11 (local_rank: 3) exitcode : 1 (pid: 657884) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [4]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 12 (local_rank: 4) exitcode : 1 (pid: 657885) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [5]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 13 (local_rank: 5) exitcode : 1 (pid: 657886) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [6]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 14 (local_rank: 6) exitcode : 1 (pid: 657887) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [7]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 15 (local_rank: 7) exitcode : 1 (pid: 657888) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2024-07-02_18:38:37 host : ip-26-0-171-88.ec2.internal rank : 8 (local_rank: 0) exitcode : 1 (pid: 657881) error_file: traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ srun: error: ip-26-0-171-88: task 1: Exited with exit code 1 Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.