======================== START TIME: Wed Jul 3 00:43:48 UTC 2024 python3 version = Python 3.10.14 ======================== The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well. Token is valid (permission: write). Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token Login successful Already on 'bench_cluster' M examples/config_tiny_llama.py M examples/config_tiny_llama.yaml M examples/train_tiny_llama.sh M src/nanotron/models/llama.py M src/nanotron/trainer.py Your branch is up to date with 'origin/bench_cluster'. Job status: RUNNING W0703 00:43:50.947000 139774441719616 torch/distributed/run.py:757] W0703 00:43:50.947000 139774441719616 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.947000 139774441719616 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.947000 139774441719616 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.951000 139902698932032 torch/distributed/run.py:757] W0703 00:43:50.951000 139902698932032 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.951000 139902698932032 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.951000 139902698932032 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.951000 140559286052672 torch/distributed/run.py:757] W0703 00:43:50.951000 140559286052672 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.951000 140559286052672 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.951000 140559286052672 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.956000 139852630202176 torch/distributed/run.py:757] W0703 00:43:50.956000 139852630202176 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.956000 139852630202176 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.956000 139852630202176 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.963000 139639714916160 torch/distributed/run.py:757] W0703 00:43:50.963000 139639714916160 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.963000 139639714916160 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.963000 139639714916160 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.984000 140673530607424 torch/distributed/run.py:757] W0703 00:43:50.984000 140673530607424 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.984000 140673530607424 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.984000 140673530607424 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.994000 140339617048384 torch/distributed/run.py:757] W0703 00:43:50.994000 140339617048384 torch/distributed/run.py:757] ***************************************** W0703 00:43:50.994000 140339617048384 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:50.994000 140339617048384 torch/distributed/run.py:757] ***************************************** W0703 00:43:51.015000 140047925856064 torch/distributed/run.py:757] W0703 00:43:51.015000 140047925856064 torch/distributed/run.py:757] ***************************************** W0703 00:43:51.015000 140047925856064 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 00:43:51.015000 140047925856064 torch/distributed/run.py:757] ***************************************** [default0]:07/03/2024 00:44:11 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260) [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config: [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Config(general=GeneralArgs(project='bench_cluster', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: run='%date_%jobid', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: step=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: consumed_train_samples=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: benchmark_csv_path=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ignore_sanity_checks=True), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: parallelism=ParallelismArgs(dp=16, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp=4, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pp_engine=, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_mode=, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tp_linear_async_communication=False, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: expert_parallel_size=1), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: init_method=RandomInit(std=0.025), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dtype=torch.bfloat16, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: make_vocab_size_divisible_by=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: ddp_bucket_cap_mb=25), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_revision=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokenizer_max_length=None), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoint_interval=100000, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: save_initial_state=False, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: resume_checkpoint_path=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: checkpoints_path_is_shared_file_system=False), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: logging=LoggingArgs(log_level='info', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: log_level_replica='info', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration_step_info_interval=1), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tokens=TokensArgs(sequence_length=4096, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: train_steps=20, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: micro_batch_size=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: batch_accumulation_per_replica=64, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: val_check_interval=-1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_val_batches=0, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: limit_test_batches=0), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta1=0.9, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: adam_beta2=0.95, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: torch_adam_is_fused=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: name='adamW'), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: zero_stage=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: weight_decay=0.01, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: clip_grad=1.0, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: accumulate_grad_in_fp32=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_steps=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_warmup_style='linear', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_style='linear', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_steps=19, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lr_decay_starting_step=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: min_decay_lr=1e-05)), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data_stages=[DatasetStageArgs(name='Training Stage', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: start_training_step=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_splits='train', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hf_dataset_config_name=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_processing_num_proc_per_process=64, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: dataset_overwrite_cache=False, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: text_column_name='text'), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: seed=42, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_loading_workers=0))], [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-1')), [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: lighteval=None) [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Model Config: [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: LlamaConfig(bos_token_id=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: eos_token_id=2, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_act='silu', [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: hidden_size=2048, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: initializer_range=0.02, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: intermediate_size=4096, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: is_llama_config=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: max_position_embeddings=4096, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_attention_heads=32, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_hidden_layers=24, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: num_key_value_heads=32, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pad_token_id=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: pretraining_tp=1, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rms_norm_eps=1e-05, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_scaling=None, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: rope_theta=10000.0, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: tie_word_embeddings=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: use_cache=True, [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: vocab_size=50260) [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Building model.. [default0]:07/03/2024 00:44:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Setting PP block ranks... [default3]:07/03/2024 00:44:25 [INFO|DP=6|PP=0|TP=3|ip-26-0-161-78]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=6|PP=0|TP=0|ip-26-0-161-78]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=6|PP=0|TP=1|ip-26-0-161-78]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=6|PP=0|TP=2|ip-26-0-161-78]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=4|PP=0|TP=2|ip-26-0-161-153]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=5|PP=0|TP=3|ip-26-0-161-153]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=5|PP=0|TP=1|ip-26-0-161-153]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=5|PP=0|TP=0|ip-26-0-161-153]: No checkpoint path provided. [default3]:07/03/2024 00:44:25 [INFO|DP=4|PP=0|TP=3|ip-26-0-161-153]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=4|PP=0|TP=1|ip-26-0-161-153]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=5|PP=0|TP=2|ip-26-0-161-153]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=4|PP=0|TP=0|ip-26-0-161-153]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=7|PP=0|TP=3|ip-26-0-161-78]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=14|PP=0|TP=1|ip-26-0-171-88]: No checkpoint path provided. [default3]:07/03/2024 00:44:25 [INFO|DP=14|PP=0|TP=3|ip-26-0-171-88]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=15|PP=0|TP=3|ip-26-0-171-88]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=7|PP=0|TP=0|ip-26-0-161-78]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=14|PP=0|TP=2|ip-26-0-171-88]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=14|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=15|PP=0|TP=0|ip-26-0-171-88]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=15|PP=0|TP=1|ip-26-0-171-88]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=7|PP=0|TP=2|ip-26-0-161-78]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=7|PP=0|TP=1|ip-26-0-161-78]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=2|PP=0|TP=2|ip-26-0-161-103]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=10|PP=0|TP=1|ip-26-0-171-102]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=3|PP=0|TP=2|ip-26-0-161-103]: No checkpoint path provided. [default3]:07/03/2024 00:44:25 [INFO|DP=2|PP=0|TP=3|ip-26-0-161-103]: No checkpoint path provided. [default3]:07/03/2024 00:44:25 [INFO|DP=10|PP=0|TP=3|ip-26-0-171-102]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=11|PP=0|TP=1|ip-26-0-171-102]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=15|PP=0|TP=2|ip-26-0-171-88]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=3|PP=0|TP=0|ip-26-0-161-103]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=2|PP=0|TP=0|ip-26-0-161-103]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=3|PP=0|TP=3|ip-26-0-161-103]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) [default2]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB [default1]:07/03/2024 00:44:25 [INFO|DP=2|PP=0|TP=1|ip-26-0-161-103]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=3|PP=0|TP=1|ip-26-0-161-103]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Total number of parameters: 1.11G (2117.09MiB) [default0]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) [default3]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) [default3]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB [default3]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB [default0]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Parametrizing model parameters using StandardParametrizator [default3]:07/03/2024 00:44:25 [INFO|DP=12|PP=0|TP=3|ip-26-0-171-62]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=11|PP=0|TP=0|ip-26-0-171-102]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=10|PP=0|TP=2|ip-26-0-171-102]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=11|PP=0|TP=2|ip-26-0-171-102]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=11|PP=0|TP=3|ip-26-0-171-102]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=10|PP=0|TP=0|ip-26-0-171-102]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=13|PP=0|TP=3|ip-26-0-171-62]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=12|PP=0|TP=2|ip-26-0-171-62]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=12|PP=0|TP=1|ip-26-0-171-62]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=13|PP=0|TP=1|ip-26-0-171-62]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=13|PP=0|TP=0|ip-26-0-171-62]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: Local number of parameters: 277M (529.27MiB) [default1]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB [default1]:07/03/2024 00:44:25 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=12|PP=0|TP=0|ip-26-0-171-62]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=13|PP=0|TP=2|ip-26-0-171-62]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=1|PP=0|TP=3|ip-26-0-160-225]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-225]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-225]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=1|PP=0|TP=2|ip-26-0-160-225]: No checkpoint path provided. [default0]:07/03/2024 00:44:25 [INFO|DP=8|PP=0|TP=0|ip-26-0-162-233]: No checkpoint path provided. [default7]:07/03/2024 00:44:25 [INFO|DP=9|PP=0|TP=3|ip-26-0-162-233]: No checkpoint path provided. [default6]:07/03/2024 00:44:25 [INFO|DP=9|PP=0|TP=2|ip-26-0-162-233]: No checkpoint path provided. [default4]:07/03/2024 00:44:25 [INFO|DP=9|PP=0|TP=0|ip-26-0-162-233]: No checkpoint path provided. [default1]:07/03/2024 00:44:25 [INFO|DP=8|PP=0|TP=1|ip-26-0-162-233]: No checkpoint path provided. [default2]:07/03/2024 00:44:25 [INFO|DP=8|PP=0|TP=2|ip-26-0-162-233]: No checkpoint path provided. [default5]:07/03/2024 00:44:25 [INFO|DP=9|PP=0|TP=1|ip-26-0-162-233]: No checkpoint path provided. [default3]:07/03/2024 00:44:25 [INFO|DP=8|PP=0|TP=3|ip-26-0-162-233]: No checkpoint path provided. [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Optimizer Building] Using LearningRateForSP as learning rate [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] Size of optimizer params per rank: [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 0 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 1 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 2 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 3 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 4 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 5 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 6 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 7 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 8 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 9 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 10 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 11 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 12 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 13 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 14 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:28 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [ZeRO sharding] DP Rank 15 has 17.3M out of 277M (6.25%) params' optimizer states [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Using `datasets` library [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4') [default0]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:30 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Training Plan] There are 1 training stages [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Stage Training Stage] start from step 1 [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: [Start training] datetime: 2024-07-03 00:44:30.947654 | mbs: 1 | grad_accum: 64 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0 [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps [default0]:07/03/2024 00:44:30 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1678.92MiB. Peak allocated 1678.92MiB. Peak reserved: 1736.00MiB [default0]:07/03/2024 00:44:31 [WARNING|DP=8|PP=0|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=9|PP=0|TP=3|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=8|PP=0|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=6|PP=0|TP=3|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=7|PP=0|TP=0|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=14|PP=0|TP=3|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=6|PP=0|TP=0|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=15|PP=0|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=8|PP=0|TP=2|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=15|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=14|PP=0|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=6|PP=0|TP=2|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=9|PP=0|TP=1|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=7|PP=0|TP=1|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=11|PP=0|TP=1|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=3|PP=0|TP=2|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=10|PP=0|TP=1|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=2|PP=0|TP=0|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=11|PP=0|TP=0|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=13|PP=0|TP=3|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=12|PP=0|TP=3|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=5|PP=0|TP=1|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=4|PP=0|TP=2|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=4|PP=0|TP=3|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=4|PP=0|TP=1|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=5|PP=0|TP=0|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=4|PP=0|TP=0|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=12|PP=0|TP=1|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=12|PP=0|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=1|PP=0|TP=2|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=13|PP=0|TP=2|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=9|PP=0|TP=2|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=9|PP=0|TP=0|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=7|PP=0|TP=3|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=6|PP=0|TP=1|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=14|PP=0|TP=1|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=14|PP=0|TP=2|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=7|PP=0|TP=2|ip-26-0-161-78]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=8|PP=0|TP=3|ip-26-0-162-233]: Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=2|PP=0|TP=3|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=2|PP=0|TP=2|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default3]:07/03/2024 00:44:31 [WARNING|DP=10|PP=0|TP=3|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=3|PP=0|TP=0|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=3|PP=0|TP=3|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=3|PP=0|TP=1|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default1]:07/03/2024 00:44:31 [WARNING|DP=2|PP=0|TP=1|ip-26-0-161-103]: Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=1|PP=0|TP=3|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=5|PP=0|TP=3|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=10|PP=0|TP=2|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=5|PP=0|TP=2|ip-26-0-161-153]: Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=11|PP=0|TP=3|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=11|PP=0|TP=2|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default0]:07/03/2024 00:44:31 [WARNING|DP=10|PP=0|TP=0|ip-26-0-171-102]: Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=13|PP=0|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default2]:07/03/2024 00:44:31 [WARNING|DP=12|PP=0|TP=2|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default5]:07/03/2024 00:44:31 [WARNING|DP=13|PP=0|TP=1|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default4]:07/03/2024 00:44:31 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-225]: Repo card metadata block was not found. Setting CardData to empty. [default0]:Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default1]:Repo card metadata block was not found. Setting CardData to empty. [default3]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default5]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default4]:Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default2]:Repo card metadata block was not found. Setting CardData to empty. [default7]:Repo card metadata block was not found. Setting CardData to empty. [default7]:07/03/2024 00:44:31 [WARNING|DP=15|PP=0|TP=3|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default6]:07/03/2024 00:44:31 [WARNING|DP=15|PP=0|TP=2|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty. [default6]:Repo card metadata block was not found. Setting CardData to empty. [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.) [default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default1]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default5]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default0]:07/03/2024 00:44:49 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1755.02MiB. Peak allocated 4475.08MiB. Peak reserved: 4808.00MiB [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default7]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default4]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default5]: warnings.warn( [default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default6]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default2]: warnings.warn( [default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default3]: warnings.warn( [default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default1]: warnings.warn( [default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions [default0]: warnings.warn( [default0]:07/03/2024 00:44:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 23.9K | tokens_per_sec: 176K | tokens_per_sec_per_gpu: 2.74K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 0.0001 | model_tflops_per_gpu: 24.9 | hardware_tflops_per_gpu: 24.9 | grad_norm: 20.6 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 5.72G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.7G | hd_free_memory_tb: 245G [default0]:07/03/2024 00:44:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 2980.52MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.44MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 14.2K | tokens_per_sec: 294K | tokens_per_sec_per_gpu: 4.6K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.53e-05 | model_tflops_per_gpu: 41.7 | hardware_tflops_per_gpu: 41.7 | grad_norm: 20.7 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 5.72G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.7G | hd_free_memory_tb: 245G [default0]:07/03/2024 00:45:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 2980.56MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.44MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 11.6 | lr: 9.05e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 194 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 5.72G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.7G | hd_free_memory_tb: 245G [default0]:07/03/2024 00:45:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 2980.56MiB. Peak reserved: 5456.00MiB [default0]:STAGE:2024-07-03 00:45:22 1773699:1773699 ActivityProfilerController.cpp:314] Completed Stage: Warm Up [default0]:07/03/2024 00:45:35 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.44MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 13.6 | lr: 8.58e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 28 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 5.72G | hd_total_memory_tb: 312G | hd_used_memory_tb: 66.7G | hd_free_memory_tb: 245G [default0]:07/03/2024 00:45:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 2980.56MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:45:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.72K | global_batch_size: 1.02K | lm_loss: 12 | lr: 8.11e-05 | model_tflops_per_gpu: 42.8 | hardware_tflops_per_gpu: 42.8 | grad_norm: 49 [default0]:07/03/2024 00:45:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:46:04 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 19.9 [default0]:STAGE:2024-07-03 00:46:40 1773699:1773699 ActivityProfilerController.cpp:320] Completed Stage: Collection [default0]:STAGE:2024-07-03 00:46:43 1773699:1773699 ActivityProfilerController.cpp:324] Completed Stage: Post Processing [default0]:07/03/2024 00:51:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:51:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 7 / 20 | consumed_tokens: 29.4M | elapsed_time_per_iteration_ms: 9.71K | tokens_per_sec: 432K | tokens_per_sec_per_gpu: 6.75K | global_batch_size: 1.02K | lm_loss: 10.4 | lr: 7.16e-05 | model_tflops_per_gpu: 61.2 | hardware_tflops_per_gpu: 61.2 | grad_norm: 8.64 [default0]:07/03/2024 00:51:17 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:51:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 8 / 20 | consumed_tokens: 33.6M | elapsed_time_per_iteration_ms: 14K | tokens_per_sec: 300K | tokens_per_sec_per_gpu: 4.69K | global_batch_size: 1.02K | lm_loss: 9.67 | lr: 6.68e-05 | model_tflops_per_gpu: 42.5 | hardware_tflops_per_gpu: 42.5 | grad_norm: 6.92 [default0]:07/03/2024 00:51:31 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:51:45 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 9 / 20 | consumed_tokens: 37.7M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 11.3 | lr: 6.21e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 53.2 [default0]:07/03/2024 00:51:45 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5456.00MiB [default0]:07/03/2024 00:51:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 10 / 20 | consumed_tokens: 41.9M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.71K | global_batch_size: 1.02K | lm_loss: 9.13 | lr: 5.74e-05 | model_tflops_per_gpu: 42.8 | hardware_tflops_per_gpu: 42.8 | grad_norm: 16.8 [default0]:07/03/2024 00:51:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:52:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 11 / 20 | consumed_tokens: 46.1M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.72K | global_batch_size: 1.02K | lm_loss: 8.59 | lr: 5.26e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 7.94 [default0]:07/03/2024 00:52:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:52:26 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 12 / 20 | consumed_tokens: 50.3M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 8.39 | lr: 4.79e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 5.82 [default0]:07/03/2024 00:52:26 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:52:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 13 / 20 | consumed_tokens: 54.5M | elapsed_time_per_iteration_ms: 14.1K | tokens_per_sec: 297K | tokens_per_sec_per_gpu: 4.64K | global_batch_size: 1.02K | lm_loss: 8.18 | lr: 4.32e-05 | model_tflops_per_gpu: 42.1 | hardware_tflops_per_gpu: 42.1 | grad_norm: 5.62 [default0]:07/03/2024 00:52:40 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:52:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 14 / 20 | consumed_tokens: 58.7M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 7.93 | lr: 3.84e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 5.41 [default0]:07/03/2024 00:52:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:53:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 15 / 20 | consumed_tokens: 62.9M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.71K | global_batch_size: 1.02K | lm_loss: 7.7 | lr: 3.37e-05 | model_tflops_per_gpu: 42.8 | hardware_tflops_per_gpu: 42.8 | grad_norm: 5 [default0]:07/03/2024 00:53:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:53:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 16 / 20 | consumed_tokens: 67.1M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.72K | global_batch_size: 1.02K | lm_loss: 7.55 | lr: 2.89e-05 | model_tflops_per_gpu: 42.8 | hardware_tflops_per_gpu: 42.8 | grad_norm: 4.9 [default0]:07/03/2024 00:53:22 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:53:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 17 / 20 | consumed_tokens: 71.3M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 7.46 | lr: 2.42e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 4.94 [default0]:07/03/2024 00:53:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 18 / 20 | consumed_tokens: 75.5M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 303K | tokens_per_sec_per_gpu: 4.73K | global_batch_size: 1.02K | lm_loss: 7.38 | lr: 1.95e-05 | model_tflops_per_gpu: 42.9 | hardware_tflops_per_gpu: 42.9 | grad_norm: 5.8 [default0]:07/03/2024 00:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:54:04 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 19 / 20 | consumed_tokens: 79.7M | elapsed_time_per_iteration_ms: 13.9K | tokens_per_sec: 302K | tokens_per_sec_per_gpu: 4.72K | global_batch_size: 1.02K | lm_loss: 7.24 | lr: 1.47e-05 | model_tflops_per_gpu: 42.8 | hardware_tflops_per_gpu: 42.8 | grad_norm: 4.45 [default0]:07/03/2024 00:54:04 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: Memory usage: 1887.41MiB. Peak allocated 4607.50MiB. Peak reserved: 5458.00MiB [default0]:07/03/2024 00:54:18 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-225]: iteration: 20 / 20 | consumed_tokens: 83.9M | elapsed_time_per_iteration_ms: 14.2K | tokens_per_sec: 295K | tokens_per_sec_per_gpu: 4.61K | global_batch_size: 1.02K | lm_loss: 7.15 | lr: 1e-05 | model_tflops_per_gpu: 41.8 | hardware_tflops_per_gpu: 41.8 | grad_norm: 2.95 W0703 00:55:08.287000 139902698932032 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-78.ec2.internal_1137166_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. W0703 00:55:08.293000 139902698932032 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-78.ec2.internal_1137166_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError. Saved 1 csv files over 1 completed logs Processing file: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-1/profiler/ip-26-0-160-225_1773699.1719967805631031040.pt.trace.json Results written to /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-1/profiler.csv Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details. ip-26-0-160-225_1773699.1719967805631031040.pt.trace.json: 0%| | 0.00/8.99G [00:00