--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - standard inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'casual profile headshot photo of TOK woman for instagram. hasselblad photography.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png --- # simpletuner-lora This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` casual profile headshot photo of TOK woman for instagram. hasselblad photography. ``` ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `euler` - Seed: `42` - Resolution: `576x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 14 - Training steps: 1250 - Learning rate: 0.0005 - Effective batch size: 2 - Micro-batch size: 2 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: Pure BF16 - Quantised: No - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: 16.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### rita-512 - Repeats: 10 - Total number of images: 16 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'naumnaum/simpletuner-lora' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "casual profile headshot photo of TOK woman for instagram. hasselblad photography." pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=576, height=1024, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```