navidmadani commited on
Commit
40655fa
·
1 Parent(s): f6fce6e

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,87 @@
1
  ---
2
- license: openrail
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
  ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `torch.utils.data.dataloader.DataLoader` of length 24855 with parameters:
49
+ ```
50
+ {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 5,
61
+ "evaluation_steps": 6000,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 2e-05
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 6000,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
80
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
81
+ (2): Normalize()
82
+ )
83
+ ```
84
+
85
+ ## Citing & Authors
86
+
87
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/user/smadani/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.23.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
eval/similarity_evaluation_results.csv ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,6000,0.7705983141674634,0.7588410765997566,0.7460866133571115,0.7588409194986603,0.7460196340124199,0.7583741883113354,0.7705983144051983,0.7588409193253192
3
+ 0,12000,0.7890708590630007,0.7717662038224076,0.7657517620833345,0.7717662033649667,0.7658501737655569,0.771530708776096,0.7890708588357381,0.7717662045016314
4
+ 0,18000,0.7989500289377678,0.7804163890975293,0.7762049247088953,0.7804163900401087,0.7764791637867681,0.7803444399334862,0.7989500281277483,0.7804166019786863
5
+ 0,24000,0.8030339818318738,0.7829832500550294,0.7809943470749454,0.7829832507202608,0.7809796874459198,0.7826594770812045,0.8030339814524897,0.7829832493277981
6
+ 0,-1,0.8009557271543037,0.7805823031759661,0.7805424806895,0.7805823023720204,0.7804498252950408,0.7802254871218193,0.800955727092346,0.7805823030442471
7
+ 1,6000,0.8073723349466574,0.7863297896519679,0.7842878819763555,0.7863297891175831,0.7842116380618542,0.7860381303428672,0.8073723338855715,0.7863297892192027
8
+ 1,12000,0.8058417139291039,0.7853900056226056,0.7864925727642911,0.7853900046522265,0.786154246362743,0.7847415501717939,0.8058417140505345,0.7853900065126332
9
+ 1,18000,0.8113867584164989,0.7894462950957082,0.7883637190471253,0.78944629444399,0.7880311867111743,0.7888685394551394,0.8113867587891529,0.7894462959064469
10
+ 1,24000,0.8136074130413401,0.7912111996064499,0.7890980356771737,0.7912111982856123,0.7886681367201622,0.7904812273361662,0.8136074133277406,0.7912111985007747
11
+ 1,-1,0.8148753484791565,0.7928271165911006,0.7910503153275671,0.7928271163478682,0.7906903528848861,0.7922664861219498,0.8148753494014288,0.7928271157518523
12
+ 2,6000,0.8154129398329505,0.793216701381966,0.7915641409348209,0.7932167012638446,0.7912033007750121,0.7926588220416374,0.8154129400583746,0.7932167014442014
13
+ 2,12000,0.8164994641188084,0.7936501776859877,0.7907609775653783,0.7936501353074314,0.7901868156457241,0.7928485584622326,0.8164994633163214,0.7936501337068416
14
+ 2,18000,0.8169088326038305,0.7940242044630016,0.7925981617252766,0.7940241616487277,0.791854228829219,0.7930770429272399,0.8169088324514927,0.794024202973127
15
+ 2,24000,0.817381603637144,0.7942456461994725,0.7938404278735067,0.794245646718646,0.7929595813863601,0.7931616299721707,0.8173816045214284,0.7942456477312998
16
+ 2,-1,0.8185604144860281,0.7951918790861693,0.7931898716757719,0.7951918790099678,0.7924681210653997,0.794236095936382,0.8185604140474608,0.79519187986927
17
+ 3,6000,0.8193032803679741,0.7961087927943666,0.7940293504687437,0.7961087930091338,0.793154788414539,0.7950743200628629,0.8193032811230874,0.7961087915192893
18
+ 3,12000,0.8197369795013651,0.7965322582782887,0.7944689704949262,0.7965322580684167,0.7935607551234761,0.7954655685014532,0.8197369794781375,0.7965324174650629
19
+ 3,18000,0.8205325959948845,0.7970379923136904,0.7950646479929744,0.7970379927359682,0.7940318074741194,0.7958553883176431,0.8205325943318713,0.7970379905522855
20
+ 3,24000,0.8210258874152909,0.7973519554230893,0.7954329061475902,0.7973519466285548,0.7944299823663004,0.7961594670666294,0.8210258882659311,0.7973519458742141
21
+ 3,-1,0.8197625832707419,0.7960490278726131,0.7952791568334892,0.7960490286070598,0.7940967097548686,0.7946291495871929,0.8197625835547221,0.7960490275050291
22
+ 4,6000,0.8206867927654762,0.7968466840352273,0.7954804387705738,0.7968466839241598,0.7943709438539766,0.7955688217063781,0.8206867923658062,0.7968468493310414
23
+ 4,12000,0.8206924782959505,0.7971168102226616,0.7958351665765877,0.7971168104374906,0.7946871011099879,0.7957988169630384,0.8206924794519317,0.7971168101394549
24
+ 4,18000,0.8218455528365036,0.7980237509205957,0.7960749680999324,0.7980235814098676,0.795001300955575,0.7967852671167873,0.8218455536561325,0.7980235868506562
25
+ 4,24000,0.8213873313501759,0.797632686420526,0.7962854364032825,0.7976326866146097,0.7951608660063313,0.7963457863302134,0.8213873318744489,0.7976326863862572
26
+ 4,-1,0.8213716630249875,0.7976205728576652,0.7962610655915265,0.797620572808963,0.7951433958969236,0.7963369599882939,0.8213716632503943,0.7976205725251677
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:637968c7637e60b55f601cafd534181869808498b732c25542e7df55739f1615
3
+ size 438014769
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "do_lower_case": true,
5
+ "eos_token": "</s>",
6
+ "mask_token": "<mask>",
7
+ "model_max_length": 512,
8
+ "name_or_path": "/user/smadani/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "</s>",
11
+ "special_tokens_map_file": null,
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "MPNetTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff