Commit
·
40655fa
1
Parent(s):
f6fce6e
Upload 12 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +85 -1
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_results.csv +26 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`torch.utils.data.dataloader.DataLoader` of length 24855 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
56 |
+
|
57 |
+
Parameters of the fit()-Method:
|
58 |
+
```
|
59 |
+
{
|
60 |
+
"epochs": 5,
|
61 |
+
"evaluation_steps": 6000,
|
62 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
63 |
+
"max_grad_norm": 1,
|
64 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
65 |
+
"optimizer_params": {
|
66 |
+
"lr": 2e-05
|
67 |
+
},
|
68 |
+
"scheduler": "WarmupLinear",
|
69 |
+
"steps_per_epoch": null,
|
70 |
+
"warmup_steps": 6000,
|
71 |
+
"weight_decay": 0.01
|
72 |
+
}
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
## Full Model Architecture
|
77 |
+
```
|
78 |
+
SentenceTransformer(
|
79 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
80 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
81 |
+
(2): Normalize()
|
82 |
+
)
|
83 |
+
```
|
84 |
+
|
85 |
+
## Citing & Authors
|
86 |
+
|
87 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/user/smadani/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.23.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_results.csv
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,6000,0.7705983141674634,0.7588410765997566,0.7460866133571115,0.7588409194986603,0.7460196340124199,0.7583741883113354,0.7705983144051983,0.7588409193253192
|
3 |
+
0,12000,0.7890708590630007,0.7717662038224076,0.7657517620833345,0.7717662033649667,0.7658501737655569,0.771530708776096,0.7890708588357381,0.7717662045016314
|
4 |
+
0,18000,0.7989500289377678,0.7804163890975293,0.7762049247088953,0.7804163900401087,0.7764791637867681,0.7803444399334862,0.7989500281277483,0.7804166019786863
|
5 |
+
0,24000,0.8030339818318738,0.7829832500550294,0.7809943470749454,0.7829832507202608,0.7809796874459198,0.7826594770812045,0.8030339814524897,0.7829832493277981
|
6 |
+
0,-1,0.8009557271543037,0.7805823031759661,0.7805424806895,0.7805823023720204,0.7804498252950408,0.7802254871218193,0.800955727092346,0.7805823030442471
|
7 |
+
1,6000,0.8073723349466574,0.7863297896519679,0.7842878819763555,0.7863297891175831,0.7842116380618542,0.7860381303428672,0.8073723338855715,0.7863297892192027
|
8 |
+
1,12000,0.8058417139291039,0.7853900056226056,0.7864925727642911,0.7853900046522265,0.786154246362743,0.7847415501717939,0.8058417140505345,0.7853900065126332
|
9 |
+
1,18000,0.8113867584164989,0.7894462950957082,0.7883637190471253,0.78944629444399,0.7880311867111743,0.7888685394551394,0.8113867587891529,0.7894462959064469
|
10 |
+
1,24000,0.8136074130413401,0.7912111996064499,0.7890980356771737,0.7912111982856123,0.7886681367201622,0.7904812273361662,0.8136074133277406,0.7912111985007747
|
11 |
+
1,-1,0.8148753484791565,0.7928271165911006,0.7910503153275671,0.7928271163478682,0.7906903528848861,0.7922664861219498,0.8148753494014288,0.7928271157518523
|
12 |
+
2,6000,0.8154129398329505,0.793216701381966,0.7915641409348209,0.7932167012638446,0.7912033007750121,0.7926588220416374,0.8154129400583746,0.7932167014442014
|
13 |
+
2,12000,0.8164994641188084,0.7936501776859877,0.7907609775653783,0.7936501353074314,0.7901868156457241,0.7928485584622326,0.8164994633163214,0.7936501337068416
|
14 |
+
2,18000,0.8169088326038305,0.7940242044630016,0.7925981617252766,0.7940241616487277,0.791854228829219,0.7930770429272399,0.8169088324514927,0.794024202973127
|
15 |
+
2,24000,0.817381603637144,0.7942456461994725,0.7938404278735067,0.794245646718646,0.7929595813863601,0.7931616299721707,0.8173816045214284,0.7942456477312998
|
16 |
+
2,-1,0.8185604144860281,0.7951918790861693,0.7931898716757719,0.7951918790099678,0.7924681210653997,0.794236095936382,0.8185604140474608,0.79519187986927
|
17 |
+
3,6000,0.8193032803679741,0.7961087927943666,0.7940293504687437,0.7961087930091338,0.793154788414539,0.7950743200628629,0.8193032811230874,0.7961087915192893
|
18 |
+
3,12000,0.8197369795013651,0.7965322582782887,0.7944689704949262,0.7965322580684167,0.7935607551234761,0.7954655685014532,0.8197369794781375,0.7965324174650629
|
19 |
+
3,18000,0.8205325959948845,0.7970379923136904,0.7950646479929744,0.7970379927359682,0.7940318074741194,0.7958553883176431,0.8205325943318713,0.7970379905522855
|
20 |
+
3,24000,0.8210258874152909,0.7973519554230893,0.7954329061475902,0.7973519466285548,0.7944299823663004,0.7961594670666294,0.8210258882659311,0.7973519458742141
|
21 |
+
3,-1,0.8197625832707419,0.7960490278726131,0.7952791568334892,0.7960490286070598,0.7940967097548686,0.7946291495871929,0.8197625835547221,0.7960490275050291
|
22 |
+
4,6000,0.8206867927654762,0.7968466840352273,0.7954804387705738,0.7968466839241598,0.7943709438539766,0.7955688217063781,0.8206867923658062,0.7968468493310414
|
23 |
+
4,12000,0.8206924782959505,0.7971168102226616,0.7958351665765877,0.7971168104374906,0.7946871011099879,0.7957988169630384,0.8206924794519317,0.7971168101394549
|
24 |
+
4,18000,0.8218455528365036,0.7980237509205957,0.7960749680999324,0.7980235814098676,0.795001300955575,0.7967852671167873,0.8218455536561325,0.7980235868506562
|
25 |
+
4,24000,0.8213873313501759,0.797632686420526,0.7962854364032825,0.7976326866146097,0.7951608660063313,0.7963457863302134,0.8213873318744489,0.7976326863862572
|
26 |
+
4,-1,0.8213716630249875,0.7976205728576652,0.7962610655915265,0.797620572808963,0.7951433958969236,0.7963369599882939,0.8213716632503943,0.7976205725251677
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:637968c7637e60b55f601cafd534181869808498b732c25542e7df55739f1615
|
3 |
+
size 438014769
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": "<mask>",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"name_or_path": "/user/smadani/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
|
9 |
+
"pad_token": "<pad>",
|
10 |
+
"sep_token": "</s>",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "MPNetTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|