update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-snl
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-snl
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [north/t5_base_NCC_lm](https://huggingface.co/north/t5_base_NCC_lm) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.0574
|
20 |
+
- Rouge1: 29.7694
|
21 |
+
- Rouge2: 15.6776
|
22 |
+
- Rougel: 27.3556
|
23 |
+
- Rougelsum: 28.4819
|
24 |
+
- Gen Len: 19.0
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 4
|
45 |
+
- eval_batch_size: 4
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 4
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 64
|
51 |
+
- total_eval_batch_size: 16
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 20.0
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
60 |
+
| 2.9943 | 1.0 | 170 | 2.2042 | 28.1135 | 13.7477 | 25.4842 | 26.6467 | 18.9768 |
|
61 |
+
| 2.7955 | 2.0 | 340 | 2.1561 | 28.5159 | 14.3492 | 26.0596 | 27.2431 | 18.9853 |
|
62 |
+
| 2.6378 | 3.0 | 510 | 2.1310 | 28.9554 | 14.6901 | 26.4208 | 27.5523 | 18.9915 |
|
63 |
+
| 2.5962 | 4.0 | 680 | 2.1110 | 29.381 | 15.1503 | 26.8406 | 27.9653 | 18.9915 |
|
64 |
+
| 2.5369 | 5.0 | 850 | 2.1020 | 29.5767 | 15.2692 | 27.0113 | 28.1849 | 18.9963 |
|
65 |
+
| 2.5103 | 6.0 | 1020 | 2.0907 | 29.6354 | 15.434 | 27.0893 | 28.2703 | 18.9963 |
|
66 |
+
| 2.4524 | 7.0 | 1190 | 2.0840 | 29.7812 | 15.4963 | 27.2779 | 28.385 | 18.9963 |
|
67 |
+
| 2.4472 | 8.0 | 1360 | 2.0800 | 29.6011 | 15.5138 | 27.1381 | 28.2799 | 18.9963 |
|
68 |
+
| 2.4089 | 9.0 | 1530 | 2.0752 | 29.7647 | 15.6183 | 27.318 | 28.4747 | 18.9963 |
|
69 |
+
| 2.4011 | 10.0 | 1700 | 2.0710 | 29.6533 | 15.5536 | 27.2687 | 28.4457 | 19.0 |
|
70 |
+
| 2.3792 | 11.0 | 1870 | 2.0656 | 29.8668 | 15.6931 | 27.4208 | 28.5477 | 19.0 |
|
71 |
+
| 2.3588 | 12.0 | 2040 | 2.0635 | 29.8378 | 15.682 | 27.4635 | 28.5803 | 18.9963 |
|
72 |
+
| 2.3397 | 13.0 | 2210 | 2.0630 | 29.9043 | 15.7535 | 27.5065 | 28.6539 | 19.0 |
|
73 |
+
| 2.3201 | 14.0 | 2380 | 2.0600 | 29.7926 | 15.7077 | 27.4066 | 28.5302 | 18.9963 |
|
74 |
+
| 2.3241 | 15.0 | 2550 | 2.0615 | 29.8536 | 15.7929 | 27.4572 | 28.5704 | 19.0 |
|
75 |
+
| 2.3183 | 16.0 | 2720 | 2.0574 | 29.7529 | 15.6729 | 27.3388 | 28.4678 | 19.0 |
|
76 |
+
| 2.3346 | 17.0 | 2890 | 2.0571 | 29.7443 | 15.6459 | 27.3245 | 28.4549 | 19.0 |
|
77 |
+
| 2.2932 | 18.0 | 3060 | 2.0577 | 29.7467 | 15.6717 | 27.3391 | 28.4541 | 19.0 |
|
78 |
+
| 2.2755 | 19.0 | 3230 | 2.0574 | 29.7694 | 15.6776 | 27.3556 | 28.4819 | 19.0 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.27.0.dev0
|
84 |
+
- Pytorch 1.13.1
|
85 |
+
- Datasets 2.10.1
|
86 |
+
- Tokenizers 0.13.2
|