navjordj commited on
Commit
142c87f
1 Parent(s): f60bab6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-base-snl
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-base-snl
16
+
17
+ This model is a fine-tuned version of [north/t5_base_NCC_lm](https://huggingface.co/north/t5_base_NCC_lm) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.0574
20
+ - Rouge1: 29.7694
21
+ - Rouge2: 15.6776
22
+ - Rougel: 27.3556
23
+ - Rougelsum: 28.4819
24
+ - Gen Len: 19.0
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 4
45
+ - eval_batch_size: 4
46
+ - seed: 42
47
+ - distributed_type: multi-GPU
48
+ - num_devices: 4
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 64
51
+ - total_eval_batch_size: 16
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 20.0
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
59
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
60
+ | 2.9943 | 1.0 | 170 | 2.2042 | 28.1135 | 13.7477 | 25.4842 | 26.6467 | 18.9768 |
61
+ | 2.7955 | 2.0 | 340 | 2.1561 | 28.5159 | 14.3492 | 26.0596 | 27.2431 | 18.9853 |
62
+ | 2.6378 | 3.0 | 510 | 2.1310 | 28.9554 | 14.6901 | 26.4208 | 27.5523 | 18.9915 |
63
+ | 2.5962 | 4.0 | 680 | 2.1110 | 29.381 | 15.1503 | 26.8406 | 27.9653 | 18.9915 |
64
+ | 2.5369 | 5.0 | 850 | 2.1020 | 29.5767 | 15.2692 | 27.0113 | 28.1849 | 18.9963 |
65
+ | 2.5103 | 6.0 | 1020 | 2.0907 | 29.6354 | 15.434 | 27.0893 | 28.2703 | 18.9963 |
66
+ | 2.4524 | 7.0 | 1190 | 2.0840 | 29.7812 | 15.4963 | 27.2779 | 28.385 | 18.9963 |
67
+ | 2.4472 | 8.0 | 1360 | 2.0800 | 29.6011 | 15.5138 | 27.1381 | 28.2799 | 18.9963 |
68
+ | 2.4089 | 9.0 | 1530 | 2.0752 | 29.7647 | 15.6183 | 27.318 | 28.4747 | 18.9963 |
69
+ | 2.4011 | 10.0 | 1700 | 2.0710 | 29.6533 | 15.5536 | 27.2687 | 28.4457 | 19.0 |
70
+ | 2.3792 | 11.0 | 1870 | 2.0656 | 29.8668 | 15.6931 | 27.4208 | 28.5477 | 19.0 |
71
+ | 2.3588 | 12.0 | 2040 | 2.0635 | 29.8378 | 15.682 | 27.4635 | 28.5803 | 18.9963 |
72
+ | 2.3397 | 13.0 | 2210 | 2.0630 | 29.9043 | 15.7535 | 27.5065 | 28.6539 | 19.0 |
73
+ | 2.3201 | 14.0 | 2380 | 2.0600 | 29.7926 | 15.7077 | 27.4066 | 28.5302 | 18.9963 |
74
+ | 2.3241 | 15.0 | 2550 | 2.0615 | 29.8536 | 15.7929 | 27.4572 | 28.5704 | 19.0 |
75
+ | 2.3183 | 16.0 | 2720 | 2.0574 | 29.7529 | 15.6729 | 27.3388 | 28.4678 | 19.0 |
76
+ | 2.3346 | 17.0 | 2890 | 2.0571 | 29.7443 | 15.6459 | 27.3245 | 28.4549 | 19.0 |
77
+ | 2.2932 | 18.0 | 3060 | 2.0577 | 29.7467 | 15.6717 | 27.3391 | 28.4541 | 19.0 |
78
+ | 2.2755 | 19.0 | 3230 | 2.0574 | 29.7694 | 15.6776 | 27.3556 | 28.4819 | 19.0 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.27.0.dev0
84
+ - Pytorch 1.13.1
85
+ - Datasets 2.10.1
86
+ - Tokenizers 0.13.2