Model save
Browse files- README.md +127 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: swin-tiny-patch4-window7-224-PE
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.797979797979798
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# swin-tiny-patch4-window7-224-PE
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4489
|
36 |
+
- Accuracy: 0.7980
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0025
|
56 |
+
- train_batch_size: 128
|
57 |
+
- eval_batch_size: 128
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 512
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 50
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.6872 | 1.0 | 11 | 0.6535 | 0.6061 |
|
71 |
+
| 0.7287 | 2.0 | 22 | 0.6601 | 0.6397 |
|
72 |
+
| 0.7212 | 3.0 | 33 | 0.6740 | 0.5657 |
|
73 |
+
| 0.6947 | 4.0 | 44 | 0.6531 | 0.6532 |
|
74 |
+
| 0.6783 | 5.0 | 55 | 0.6739 | 0.5724 |
|
75 |
+
| 0.6816 | 6.0 | 66 | 0.6274 | 0.6599 |
|
76 |
+
| 0.6428 | 7.0 | 77 | 0.6671 | 0.6330 |
|
77 |
+
| 0.6928 | 8.0 | 88 | 0.6380 | 0.6498 |
|
78 |
+
| 0.6767 | 9.0 | 99 | 0.6875 | 0.6061 |
|
79 |
+
| 0.6918 | 10.0 | 110 | 0.6859 | 0.5690 |
|
80 |
+
| 0.6845 | 11.0 | 121 | 0.6810 | 0.5657 |
|
81 |
+
| 0.6826 | 12.0 | 132 | 0.6919 | 0.5185 |
|
82 |
+
| 0.6877 | 13.0 | 143 | 0.6693 | 0.6061 |
|
83 |
+
| 0.6709 | 14.0 | 154 | 0.6660 | 0.5690 |
|
84 |
+
| 0.6707 | 15.0 | 165 | 0.6764 | 0.5690 |
|
85 |
+
| 0.6703 | 16.0 | 176 | 0.6467 | 0.6296 |
|
86 |
+
| 0.6629 | 17.0 | 187 | 0.6471 | 0.6431 |
|
87 |
+
| 0.6557 | 18.0 | 198 | 0.6597 | 0.6229 |
|
88 |
+
| 0.659 | 19.0 | 209 | 0.6451 | 0.6027 |
|
89 |
+
| 0.65 | 20.0 | 220 | 0.6638 | 0.6094 |
|
90 |
+
| 0.6453 | 21.0 | 231 | 0.6544 | 0.6162 |
|
91 |
+
| 0.6426 | 22.0 | 242 | 0.6565 | 0.5825 |
|
92 |
+
| 0.6339 | 23.0 | 253 | 0.6743 | 0.6296 |
|
93 |
+
| 0.6236 | 24.0 | 264 | 0.6669 | 0.5960 |
|
94 |
+
| 0.6427 | 25.0 | 275 | 0.6379 | 0.6532 |
|
95 |
+
| 0.6439 | 26.0 | 286 | 0.6361 | 0.6263 |
|
96 |
+
| 0.6212 | 27.0 | 297 | 0.6540 | 0.6465 |
|
97 |
+
| 0.6186 | 28.0 | 308 | 0.5925 | 0.6700 |
|
98 |
+
| 0.6162 | 29.0 | 319 | 0.6224 | 0.6734 |
|
99 |
+
| 0.6237 | 30.0 | 330 | 0.6018 | 0.6667 |
|
100 |
+
| 0.6061 | 31.0 | 341 | 0.5735 | 0.6801 |
|
101 |
+
| 0.6138 | 32.0 | 352 | 0.6425 | 0.6566 |
|
102 |
+
| 0.595 | 33.0 | 363 | 0.5827 | 0.6768 |
|
103 |
+
| 0.5869 | 34.0 | 374 | 0.5956 | 0.7172 |
|
104 |
+
| 0.577 | 35.0 | 385 | 0.5458 | 0.7003 |
|
105 |
+
| 0.5766 | 36.0 | 396 | 0.5603 | 0.6869 |
|
106 |
+
| 0.5726 | 37.0 | 407 | 0.5339 | 0.7340 |
|
107 |
+
| 0.5702 | 38.0 | 418 | 0.5577 | 0.7138 |
|
108 |
+
| 0.5762 | 39.0 | 429 | 0.5262 | 0.7374 |
|
109 |
+
| 0.5543 | 40.0 | 440 | 0.5091 | 0.7441 |
|
110 |
+
| 0.5339 | 41.0 | 451 | 0.5185 | 0.7542 |
|
111 |
+
| 0.5428 | 42.0 | 462 | 0.5023 | 0.7542 |
|
112 |
+
| 0.5349 | 43.0 | 473 | 0.5439 | 0.7306 |
|
113 |
+
| 0.5319 | 44.0 | 484 | 0.4745 | 0.7811 |
|
114 |
+
| 0.5294 | 45.0 | 495 | 0.5432 | 0.7172 |
|
115 |
+
| 0.5314 | 46.0 | 506 | 0.4511 | 0.7912 |
|
116 |
+
| 0.5073 | 47.0 | 517 | 0.4379 | 0.8047 |
|
117 |
+
| 0.5028 | 48.0 | 528 | 0.4487 | 0.7980 |
|
118 |
+
| 0.4985 | 49.0 | 539 | 0.4550 | 0.7946 |
|
119 |
+
| 0.4826 | 50.0 | 550 | 0.4489 | 0.7980 |
|
120 |
+
|
121 |
+
|
122 |
+
### Framework versions
|
123 |
+
|
124 |
+
- Transformers 4.33.3
|
125 |
+
- Pytorch 2.0.1+cu117
|
126 |
+
- Datasets 2.14.5
|
127 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110394865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b45e3655d5628072cdd1599947f5c90041a705f3cf0b9846349a457b8996171d
|
3 |
size 110394865
|