update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -52,23 +52,50 @@ More information needed
|
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 5e-05
|
55 |
-
- train_batch_size:
|
56 |
-
- eval_batch_size:
|
57 |
- seed: 42
|
58 |
- gradient_accumulation_steps: 4
|
59 |
-
- total_train_batch_size:
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.7302889760970389
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.5574
|
35 |
+
- Accuracy: 0.7303
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 256
|
56 |
+
- eval_batch_size: 256
|
57 |
- seed: 42
|
58 |
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 1024
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.6271 | 0.99 | 98 | 0.6035 | 0.6926 |
|
70 |
+
| 0.6156 | 1.99 | 197 | 0.5844 | 0.7006 |
|
71 |
+
| 0.6148 | 3.0 | 296 | 0.5758 | 0.7104 |
|
72 |
+
| 0.6055 | 4.0 | 395 | 0.5853 | 0.7015 |
|
73 |
+
| 0.5938 | 4.99 | 493 | 0.5858 | 0.7104 |
|
74 |
+
| 0.5878 | 5.99 | 592 | 0.5630 | 0.7210 |
|
75 |
+
| 0.5873 | 7.0 | 691 | 0.5620 | 0.7236 |
|
76 |
+
| 0.5947 | 8.0 | 790 | 0.5670 | 0.7196 |
|
77 |
+
| 0.5866 | 8.99 | 888 | 0.5592 | 0.7265 |
|
78 |
+
| 0.5807 | 9.99 | 987 | 0.5574 | 0.7254 |
|
79 |
+
| 0.5764 | 11.0 | 1086 | 0.5655 | 0.7245 |
|
80 |
+
| 0.5729 | 12.0 | 1185 | 0.5611 | 0.7237 |
|
81 |
+
| 0.577 | 12.99 | 1283 | 0.5702 | 0.7189 |
|
82 |
+
| 0.5702 | 13.99 | 1382 | 0.5588 | 0.7259 |
|
83 |
+
| 0.5717 | 15.0 | 1481 | 0.5565 | 0.7244 |
|
84 |
+
| 0.5646 | 16.0 | 1580 | 0.5536 | 0.7303 |
|
85 |
+
| 0.5591 | 16.99 | 1678 | 0.5525 | 0.7345 |
|
86 |
+
| 0.5586 | 17.99 | 1777 | 0.5565 | 0.7286 |
|
87 |
+
| 0.5668 | 19.0 | 1876 | 0.5520 | 0.7304 |
|
88 |
+
| 0.5617 | 20.0 | 1975 | 0.5557 | 0.7289 |
|
89 |
+
| 0.5546 | 20.99 | 2073 | 0.5561 | 0.7325 |
|
90 |
+
| 0.5579 | 21.99 | 2172 | 0.5537 | 0.7314 |
|
91 |
+
| 0.5604 | 23.0 | 2271 | 0.5545 | 0.7290 |
|
92 |
+
| 0.5563 | 24.0 | 2370 | 0.5591 | 0.7288 |
|
93 |
+
| 0.5634 | 24.99 | 2468 | 0.5546 | 0.7307 |
|
94 |
+
| 0.5563 | 25.99 | 2567 | 0.5557 | 0.7303 |
|
95 |
+
| 0.5563 | 27.0 | 2666 | 0.5571 | 0.7276 |
|
96 |
+
| 0.5544 | 28.0 | 2765 | 0.5551 | 0.7298 |
|
97 |
+
| 0.5491 | 28.99 | 2863 | 0.5596 | 0.7282 |
|
98 |
+
| 0.5461 | 29.77 | 2940 | 0.5574 | 0.7303 |
|
99 |
|
100 |
|
101 |
### Framework versions
|