navradio commited on
Commit
b89b5ff
1 Parent(s): bd86591

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -10
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.7841318907779495
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.4549
35
- - Accuracy: 0.7841
36
 
37
  ## Model description
38
 
@@ -52,23 +52,50 @@ More information needed
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 5e-05
55
- - train_batch_size: 128
56
- - eval_batch_size: 128
57
  - seed: 42
58
  - gradient_accumulation_steps: 4
59
- - total_train_batch_size: 512
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.585 | 0.99 | 34 | 0.5135 | 0.7553 |
70
- | 0.529 | 1.99 | 68 | 0.4736 | 0.7687 |
71
- | 0.4975 | 2.98 | 102 | 0.4549 | 0.7841 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.7302889760970389
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.5574
35
+ - Accuracy: 0.7303
36
 
37
  ## Model description
38
 
 
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 5e-05
55
+ - train_batch_size: 256
56
+ - eval_batch_size: 256
57
  - seed: 42
58
  - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 1024
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 30
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.6271 | 0.99 | 98 | 0.6035 | 0.6926 |
70
+ | 0.6156 | 1.99 | 197 | 0.5844 | 0.7006 |
71
+ | 0.6148 | 3.0 | 296 | 0.5758 | 0.7104 |
72
+ | 0.6055 | 4.0 | 395 | 0.5853 | 0.7015 |
73
+ | 0.5938 | 4.99 | 493 | 0.5858 | 0.7104 |
74
+ | 0.5878 | 5.99 | 592 | 0.5630 | 0.7210 |
75
+ | 0.5873 | 7.0 | 691 | 0.5620 | 0.7236 |
76
+ | 0.5947 | 8.0 | 790 | 0.5670 | 0.7196 |
77
+ | 0.5866 | 8.99 | 888 | 0.5592 | 0.7265 |
78
+ | 0.5807 | 9.99 | 987 | 0.5574 | 0.7254 |
79
+ | 0.5764 | 11.0 | 1086 | 0.5655 | 0.7245 |
80
+ | 0.5729 | 12.0 | 1185 | 0.5611 | 0.7237 |
81
+ | 0.577 | 12.99 | 1283 | 0.5702 | 0.7189 |
82
+ | 0.5702 | 13.99 | 1382 | 0.5588 | 0.7259 |
83
+ | 0.5717 | 15.0 | 1481 | 0.5565 | 0.7244 |
84
+ | 0.5646 | 16.0 | 1580 | 0.5536 | 0.7303 |
85
+ | 0.5591 | 16.99 | 1678 | 0.5525 | 0.7345 |
86
+ | 0.5586 | 17.99 | 1777 | 0.5565 | 0.7286 |
87
+ | 0.5668 | 19.0 | 1876 | 0.5520 | 0.7304 |
88
+ | 0.5617 | 20.0 | 1975 | 0.5557 | 0.7289 |
89
+ | 0.5546 | 20.99 | 2073 | 0.5561 | 0.7325 |
90
+ | 0.5579 | 21.99 | 2172 | 0.5537 | 0.7314 |
91
+ | 0.5604 | 23.0 | 2271 | 0.5545 | 0.7290 |
92
+ | 0.5563 | 24.0 | 2370 | 0.5591 | 0.7288 |
93
+ | 0.5634 | 24.99 | 2468 | 0.5546 | 0.7307 |
94
+ | 0.5563 | 25.99 | 2567 | 0.5557 | 0.7303 |
95
+ | 0.5563 | 27.0 | 2666 | 0.5571 | 0.7276 |
96
+ | 0.5544 | 28.0 | 2765 | 0.5551 | 0.7298 |
97
+ | 0.5491 | 28.99 | 2863 | 0.5596 | 0.7282 |
98
+ | 0.5461 | 29.77 | 2940 | 0.5574 | 0.7303 |
99
 
100
 
101
  ### Framework versions