Update README.md
Browse files
README.md
CHANGED
@@ -54,17 +54,46 @@ Users should consider implementing bias mitigation strategies and ensure thoroug
|
|
54 |
Use the following code snippet to get started with loading and using the model:
|
55 |
|
56 |
```python
|
|
|
57 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
```
|
69 |
|
70 |
## Training Details
|
|
|
54 |
Use the following code snippet to get started with loading and using the model:
|
55 |
|
56 |
```python
|
57 |
+
# Import necessary libraries
|
58 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
import torch
|
60 |
+
import intel_extension_for_pytorch as ipex # Optional for Intel optimization
|
61 |
|
62 |
+
# Specify your Hugging Face model repository
|
63 |
+
hf_model = "nayem-ng/mdjannatulnayem_llama2_7b_finetuned_casuallm_lora"
|
|
|
64 |
|
65 |
+
# Load the fine-tuned model and tokenizer
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
68 |
+
|
69 |
+
# Move the model to the desired device
|
70 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
+
model.to(device)
|
72 |
+
|
73 |
+
# Set the model to evaluation mode
|
74 |
+
model.eval()
|
75 |
+
|
76 |
+
# Optional: Optimize with Intel extensions for PyTorch
|
77 |
+
# Uncomment the next line if you want to use Intel optimizations
|
78 |
+
# model = ipex.optimize(model)
|
79 |
+
|
80 |
+
# Function to generate text
|
81 |
+
def generate_text(prompt, max_length=50):
|
82 |
+
# Tokenize the input prompt
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
84 |
+
|
85 |
+
# Generate output
|
86 |
+
with torch.no_grad():
|
87 |
+
outputs = model.generate(**inputs, max_length=max_length)
|
88 |
+
|
89 |
+
# Decode and return the generated text
|
90 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
91 |
+
|
92 |
+
# Example usage
|
93 |
+
if __name__ == "__main__":
|
94 |
+
prompt = "Once upon a time"
|
95 |
+
generated_text = generate_text(prompt)
|
96 |
+
print("Generated Text:", generated_text)
|
97 |
```
|
98 |
|
99 |
## Training Details
|