from typing import Dict, List, Any from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer from optimum.pipelines import pipeline import torch if torch.backends.cudnn.is_available(): print("cudnn:", torch.backends.cudnn.version()) class EndpointHandler(): def __init__(self, path=""): on_cuda = torch.cuda.is_available() # load the optimized model provider = "CPUExecutionProvider" if on_cuda: provider = "CUDAExecutionProvider" model = ORTModelForSequenceClassification.from_pretrained( path, export=False, provider=provider, ) tokenizer = AutoTokenizer.from_pretrained(path) device = -1 if on_cuda: device = 0 # create inference pipeline self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ inputs = data.pop("inputs", data) parameters = data.pop("parameters", dict()) prediction = self.pipeline(inputs, **parameters) return prediction