--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: d7378d34-e868-43a8-b1ab-4b97876324cd results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - MATH-Hard_train_data.json ds_type: json path: /workspace/input_data/MATH-Hard_train_data.json type: field_input: problem field_instruction: type field_output: solution system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ncbateman/d7378d34-e868-43a8-b1ab-4b97876324cd hub_repo: ncbateman hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 1000 micro_batch_size: 2 mlflow_experiment_name: /tmp/MATH-Hard_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: breakfasthut wandb_mode: online wandb_project: tuning-miner wandb_run: miner wandb_runid: d7378d34-e868-43a8-b1ab-4b97876324cd warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# d7378d34-e868-43a8-b1ab-4b97876324cd This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 105 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8067 | 0.0095 | 1 | 0.8746 | | 0.7138 | 0.2578 | 27 | 0.7637 | | 0.7179 | 0.5155 | 54 | 0.7270 | | 0.5788 | 0.7733 | 81 | 0.7156 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1