neginashz commited on
Commit
8431aab
1 Parent(s): ec1ba50

Model save

Browse files
Files changed (1) hide show
  1. README.md +180 -0
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - medalpaca/medical_meadow_medqa
10
+ model-index:
11
+ - name: mistral-7b-instruct-v02
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
24
+ model_type: MistralForCausalLM
25
+ tokenizer_type: LlamaTokenizer
26
+
27
+ trust_remote_code: true
28
+
29
+ load_in_8bit: false
30
+ load_in_4bit: true
31
+ strict: false
32
+
33
+ datasets:
34
+ - path: medalpaca/medical_meadow_medqa
35
+ type: alpaca
36
+ dataset_prepared_path:
37
+ val_set_size: 0.2
38
+ output_dir: ./qlora-mistral-7b
39
+
40
+ sequence_len: 8192
41
+ sample_packing: true
42
+ eval_sample_packing: true
43
+ pad_to_sequence_len: true
44
+
45
+ adapter: qlora
46
+ lora_model_dir:
47
+ lora_r: 256
48
+ lora_alpha: 128
49
+ lora_dropout: 0.05
50
+ lora_target_linear: true
51
+ lora_fan_in_fan_out:
52
+
53
+ wandb_project:
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_name:
57
+ wandb_log_model:
58
+
59
+ gradient_accumulation_steps: 1
60
+ micro_batch_size: 2
61
+ num_epochs: 3
62
+ optimizer: adamw_torch
63
+ lr_scheduler: cosine
64
+ learning_rate: 0.00002
65
+
66
+ train_on_inputs: false
67
+ group_by_length: false
68
+ bf16: true
69
+ fp16:
70
+ tf32:
71
+
72
+ gradient_checkpointing: true
73
+ gradient_checkpointing_kwargs:
74
+ use_reentrant: false
75
+ early_stopping_patience:
76
+ resume_from_checkpoint:
77
+ local_rank:
78
+ logging_steps: 1
79
+ xformers_attention:
80
+ flash_attention: true
81
+
82
+ warmup_steps:
83
+ evals_per_epoch: 4
84
+ saves_per_epoch: 1
85
+ debug:
86
+ deepspeed:
87
+ weight_decay: 0.0
88
+ fsdp:
89
+ - full_shard
90
+ - auto_wrap
91
+ fsdp_config:
92
+ fsdp_limit_all_gathers: true
93
+ fsdp_sync_module_states: true
94
+ fsdp_offload_params: true
95
+ fsdp_use_orig_params: false
96
+ fsdp_cpu_ram_efficient_loading: true
97
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
98
+ fsdp_transformer_layer_cls_to_wrap:
99
+ fsdp_state_dict_type: FULL_STATE_DICT
100
+ fsdp_sharding_strategy: FULL_SHARD
101
+ special_tokens:
102
+
103
+ wandb_project: mistral-7b-instruct-v02
104
+ wandb_entity:
105
+ wandb_watch:
106
+ wandb_name:
107
+ wandb_log_model:
108
+
109
+ hub_model_id: neginashz/mistral-7b-instruct-v02
110
+ hub_strategy:
111
+ early_stopping_patience:
112
+
113
+ resume_from_checkpoint:
114
+ auto_resume_from_checkpoints: true
115
+ early_stopping_patience:
116
+
117
+ ```
118
+
119
+ </details><br>
120
+
121
+ # mistral-7b-instruct-v02
122
+
123
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the medalpaca/medical_meadow_medqa dataset.
124
+ It achieves the following results on the evaluation set:
125
+ - Loss: 0.1324
126
+
127
+ ## Model description
128
+
129
+ More information needed
130
+
131
+ ## Intended uses & limitations
132
+
133
+ More information needed
134
+
135
+ ## Training and evaluation data
136
+
137
+ More information needed
138
+
139
+ ## Training procedure
140
+
141
+ ### Training hyperparameters
142
+
143
+ The following hyperparameters were used during training:
144
+ - learning_rate: 2e-05
145
+ - train_batch_size: 2
146
+ - eval_batch_size: 2
147
+ - seed: 42
148
+ - distributed_type: multi-GPU
149
+ - num_devices: 4
150
+ - total_train_batch_size: 8
151
+ - total_eval_batch_size: 8
152
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
153
+ - lr_scheduler_type: cosine
154
+ - lr_scheduler_warmup_steps: 3
155
+ - num_epochs: 3
156
+
157
+ ### Training results
158
+
159
+ | Training Loss | Epoch | Step | Validation Loss |
160
+ |:-------------:|:------:|:----:|:---------------:|
161
+ | 0.1395 | 0.2683 | 11 | 0.1455 |
162
+ | 0.117 | 0.5366 | 22 | 0.1259 |
163
+ | 0.1221 | 0.8049 | 33 | 0.1206 |
164
+ | 0.1076 | 1.0488 | 44 | 0.1149 |
165
+ | 0.0906 | 1.3171 | 55 | 0.1119 |
166
+ | 0.093 | 1.5854 | 66 | 0.1201 |
167
+ | 0.0868 | 1.8537 | 77 | 0.1121 |
168
+ | 0.0634 | 2.0976 | 88 | 0.1146 |
169
+ | 0.0464 | 2.3659 | 99 | 0.1297 |
170
+ | 0.0574 | 2.6341 | 110 | 0.1329 |
171
+ | 0.047 | 2.9024 | 121 | 0.1324 |
172
+
173
+
174
+ ### Framework versions
175
+
176
+ - PEFT 0.14.0
177
+ - Transformers 4.47.0
178
+ - Pytorch 2.5.1+cu124
179
+ - Datasets 3.1.0
180
+ - Tokenizers 0.21.0