neginashz commited on
Commit
38fcbe9
1 Parent(s): 3c012f0

Model save

Browse files
Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -55,7 +55,7 @@ wandb_log_model:
55
 
56
  gradient_accumulation_steps: 1
57
  micro_batch_size: 1
58
- num_epochs: 2
59
  optimizer: adamw_torch
60
  lr_scheduler: cosine
61
  learning_rate: 0.00002
@@ -118,7 +118,7 @@ auto_resume_from_checkpoints: true
118
 
119
  This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
120
  It achieves the following results on the evaluation set:
121
- - Loss: 0.1257
122
 
123
  ## Model description
124
 
@@ -147,8 +147,8 @@ The following hyperparameters were used during training:
147
  - total_eval_batch_size: 4
148
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
149
  - lr_scheduler_type: cosine
150
- - lr_scheduler_warmup_steps: 4
151
- - num_epochs: 2
152
 
153
  ### Training results
154
 
@@ -162,6 +162,10 @@ The following hyperparameters were used during training:
162
  | 0.1228 | 1.5 | 108 | 0.1263 |
163
  | 0.1199 | 1.75 | 126 | 0.1260 |
164
  | 0.1393 | 2.0 | 144 | 0.1257 |
 
 
 
 
165
 
166
 
167
  ### Framework versions
 
55
 
56
  gradient_accumulation_steps: 1
57
  micro_batch_size: 1
58
+ num_epochs: 3
59
  optimizer: adamw_torch
60
  lr_scheduler: cosine
61
  learning_rate: 0.00002
 
118
 
119
  This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset.
120
  It achieves the following results on the evaluation set:
121
+ - Loss: 0.1238
122
 
123
  ## Model description
124
 
 
147
  - total_eval_batch_size: 4
148
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
149
  - lr_scheduler_type: cosine
150
+ - lr_scheduler_warmup_steps: 6
151
+ - num_epochs: 3
152
 
153
  ### Training results
154
 
 
162
  | 0.1228 | 1.5 | 108 | 0.1263 |
163
  | 0.1199 | 1.75 | 126 | 0.1260 |
164
  | 0.1393 | 2.0 | 144 | 0.1257 |
165
+ | 0.1146 | 2.25 | 162 | 0.1244 |
166
+ | 0.1161 | 2.5 | 180 | 0.1238 |
167
+ | 0.139 | 2.75 | 198 | 0.1238 |
168
+ | 0.0927 | 3.0 | 216 | 0.1238 |
169
 
170
 
171
  ### Framework versions