--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: qlora-qwen-25-7b-instruct-3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.2 output_dir: ./qlora-qwen25 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 256 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: wandb_project: qwen-25-7b-instruct wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: neginashz/qlora-qwen-25-7b-instruct-3 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# qlora-qwen-25-7b-instruct-3 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1473 | 0.25 | 18 | 0.1576 | | 0.1456 | 0.5 | 36 | 0.1333 | | 0.121 | 0.75 | 54 | 0.1312 | | 0.1328 | 1.0 | 72 | 0.1303 | | 0.1336 | 1.25 | 90 | 0.1276 | | 0.1228 | 1.5 | 108 | 0.1263 | | 0.1199 | 1.75 | 126 | 0.1260 | | 0.1393 | 2.0 | 144 | 0.1257 | | 0.1146 | 2.25 | 162 | 0.1244 | | 0.1161 | 2.5 | 180 | 0.1238 | | 0.139 | 2.75 | 198 | 0.1238 | | 0.0927 | 3.0 | 216 | 0.1238 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0