--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: qlora-qwen-25-7b-instruct-s results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./qlora-qwen25-instruct sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 256 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: wandb_project: qlora-qwen-25-7b-instruct wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: neginashz/qlora-qwen-25-7b-instruct-s hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# qlora-qwen-25-7b-instruct-s This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 14 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1216 | 0.2530 | 42 | 0.1267 | | 0.1366 | 0.5060 | 84 | 0.1142 | | 0.0914 | 0.7590 | 126 | 0.1104 | | 0.0814 | 1.0060 | 168 | 0.1050 | | 0.0763 | 1.2590 | 210 | 0.1113 | | 0.0746 | 1.5120 | 252 | 0.1147 | | 0.0467 | 1.7651 | 294 | 0.1125 | | 0.0176 | 2.0120 | 336 | 0.1154 | | 0.0367 | 2.2651 | 378 | 0.1605 | | 0.0349 | 2.5181 | 420 | 0.1571 | | 0.0173 | 2.7711 | 462 | 0.1608 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0