--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: sft-qwen-25-7b-instruct-2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: load_in_4bit: strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./sft-qwen25 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: sft-qwen-25-7b-instruct wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: saves_per_epoch: debug: deepspeed: deepspeed_configs/zero2.json weight_decay: fsdp: fsdp_config: special_tokens: hub_model_id: neginashz/sft-qwen-25-7b-instruct-2 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# sft-qwen-25-7b-instruct-2 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 4 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1381 | 0.1235 | 10 | 0.1342 | | 0.1495 | 0.2469 | 20 | 0.1229 | | 0.1215 | 0.3704 | 30 | 0.1246 | | 0.1354 | 0.4938 | 40 | 0.1175 | | 0.1223 | 0.6173 | 50 | 0.1115 | | 0.1068 | 0.7407 | 60 | 0.1101 | | 0.1061 | 0.8642 | 70 | 0.1056 | | 0.118 | 0.9877 | 80 | 0.1055 | | 0.0644 | 1.1111 | 90 | 0.1054 | | 0.0554 | 1.2346 | 100 | 0.1054 | | 0.0564 | 1.3580 | 110 | 0.1054 | | 0.0601 | 1.4815 | 120 | 0.1054 | | 0.0482 | 2.0 | 162 | 0.1054 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0