Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.32 +/- 28.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d5bd3480c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5bd3480ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5bd3480d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5bd3480dc0>", "_build": "<function ActorCriticPolicy._build at 0x7d5bd3480e50>", "forward": "<function ActorCriticPolicy.forward at 0x7d5bd3480ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5bd3480f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5bd3481000>", "_predict": "<function ActorCriticPolicy._predict at 0x7d5bd3481090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5bd3481120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5bd34811b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5bd3481240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5bd361f980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003904, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699362335497884678, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoWkT2DH149Ir5bPjGlV74wLdQ9NxbLPQAAAAAAAAAAwE67PcOdW7rFQEO5cbS8tSHNATsQGyg1AACAPwAAgD8AMBy8FFyiut049zsEBq43uMWpOoDcizYAAIA/AACAP9q0sj17npK61u7aOdgQhrafUys60+LyuAAAgD8AAIA/ACSZPQPGXLwc4AU+MvC+vbL1pb16V5++AACAPwAAgD9m8IK8XKN0un7EDzTi6ymxuzWQOg0C0rMAAIA/AACAP4A5Ej1I/426asm3N8sxxjKvHde6OMvUtgAAgD8AAIA/AKgBO/ZEGborbt46katdNeREsLoa6v+5AACAPwAAgD9maz09ewaXuiYMPTocaiO2oNABOpUTWrkAAIA/AACAP80AlbvDVU+6Ei6QOga5DDYeuR07fp6muQAAgD8AAIA/AFIRvYVD0bk3JYa5J3a8tJAA4TqkZp04AACAPwAAgD8zYBU9trZcvGh6u7sGP0897f0ZvfUUBzwAAIA/AACAP+bfNr32oGi62iWBO94cCTgOKwc7UjI0ugAAgD8AAIA/pmiHPbhexrnFDo+6RIX7szRKHTu/bqc5AACAPwAAgD8AxqY8XDdQuuBcHDhZqIIzsx0QO16bMbcAAIA/AACAP81UsLsp6Bm6CMjZuomICrEqeyi60En9OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHnu/Dcdo6MAWyUTegDjAF0lEdArGruKCQLeHV9lChoBkdAYsQOktVaOmgHTegDaAhHQKxvFmZmZmZ1fZQoaAZHQGL37tZ3cHpoB03oA2gIR0CscIZj6N2ldX2UKGgGR0BhFc1jy4FzaAdN6ANoCEdArHH9TxXnyXV9lChoBkdAY6wUkfLcK2gHTegDaAhHQKx1ihQFcIJ1fZQoaAZHQGPXQ9zOopBoB03oA2gIR0CsdfA8jiXIdX2UKGgGR0A9dSFoL5RCaAdL42gIR0Cseb5tWMjvdX2UKGgGR0Bl19OO801qaAdN6ANoCEdArHwVKh+OO3V9lChoBkdAZaUXD3ueBmgHTegDaAhHQKx9YJBPbfx1fZQoaAZHQGNi624NI9VoB03oA2gIR0CsfumiQDFIdX2UKGgGR0BmFbJZGKAKaAdN6ANoCEdArH7rOTq0MXV9lChoBkdAY+BfD1oQF2gHTegDaAhHQKyDEKLKmsN1fZQoaAZHQGLLsT37DVJoB03oA2gIR0Csg3qj8DSxdX2UKGgGR0BlBRxxT850aAdN6ANoCEdArIO4lnh86XV9lChoBkdAZ8sdmQKa5WgHTegDaAhHQKyFYJuVHFx1fZQoaAZHQGFyrdFfAsVoB03oA2gIR0CsicRbbDdhdX2UKGgGR0Bl+i9RJmNBaAdN6ANoCEdArItEGZ/kNnV9lChoBkdAY9B1Fpfx+mgHTegDaAhHQKyOKNrCWNZ1fZQoaAZHQGVtvA44p+doB03oA2gIR0CskoW56MR6dX2UKGgGR0Bm7BYJVsDXaAdN6ANoCEdArJP/jsD4g3V9lChoBkdAYn6DFqBVdWgHTegDaAhHQKyZC68QI2R1fZQoaAZHQGk5Px6OYIBoB03oA2gIR0CsmXjmbLEDdX2UKGgGR0BjiUyFfzBiaAdN6ANoCEdArJ01S2phnnV9lChoBkdAY4CldkauOmgHTegDaAhHQKyf3CJGe+V1fZQoaAZHQGZJqsuFpPBoB03oA2gIR0CsoYfwZwXJdX2UKGgGR0BhO+CkGiYcaAdN6ANoCEdArKNJosZpBXV9lChoBkdAX29E0BOpKmgHTegDaAhHQKyjSwJPZZl1fZQoaAZHQGCReMyad+ZoB03oA2gIR0Csp09N34bkdX2UKGgGR0BlCRe/pMYeaAdN6ANoCEdArKe1itq59XV9lChoBkdAZKTPSlWOqGgHTegDaAhHQKyn7TWGyop1fZQoaAZHQF92/smfGuNoB03oA2gIR0CsqV4+Sr5qdX2UKGgGR0Bx+axbB42TaAdNzAJoCEdArQo+kWRA8nV9lChoBkdAYyJfiPyTZGgHTegDaAhHQK0KkWepXIV1fZQoaAZHQFtru3+dbxFoB03oA2gIR0CtC7N3fQ8fdX2UKGgGR0BmqC7TUiIMaAdN6ANoCEdArQ4aQV9F4XV9lChoBkdAcStPva11GWgHTWMBaAhHQK0P49vCMxZ1fZQoaAZHQGJmYmsvIwNoB03oA2gIR0CtExLfcer/dX2UKGgGR0BtbVdzGPxQaAdNKwJoCEdArRdOcSXdCXV9lChoBkdAZmFAsTWXkmgHTegDaAhHQK0XnUpd8iR1fZQoaAZHQGhoCz9jwx5oB03oA2gIR0CtF/SNXHR1dX2UKGgGR0Bk4p9b5dnkaAdN6ANoCEdArRvmVNYbKnV9lChoBkdAYY9njABT42gHTegDaAhHQK0ez69kBjp1fZQoaAZHQGcet1QqI8BoB03oA2gIR0CtIJbo0Q9SdX2UKGgGR0BxW1RwZOzqaAdN5gNoCEdArSI91nuiOHV9lChoBkdAX5r07KaG6GgHTegDaAhHQK0iVxFy7wt1fZQoaAZHQGXte98JD3NoB03oA2gIR0CtJoIL5RCQdX2UKGgGR0Boxvl8w5/9aAdN6ANoCEdArSbi66J66nV9lChoBkdAZ1njiGWUr2gHTegDaAhHQK0rUWnCO3l1fZQoaAZHQGZI+717IDJoB03oA2gIR0CtK7NSZSeidX2UKGgGR0BxdLZnL7oCaAdNxgFoCEdArSzOHzpX63V9lChoBkdAYbiHQhOgx2gHTegDaAhHQK0tEws5GSZ1fZQoaAZHQGDrR0dRziloB03oA2gIR0CtL5eKKpDNdX2UKGgGR0BjfWpqASWaaAdN6ANoCEdArTGCqsEJSnV9lChoBkdAYjIb3oLXtmgHTegDaAhHQK00uA6Mir11fZQoaAZHQF73ps41gploB03oA2gIR0CtONl9a2WqdX2UKGgGR0Bj2JNwiqyXaAdN6ANoCEdArTklw5vLo3V9lChoBkdAYsmXCTEBKmgHTegDaAhHQK05f2zv7WN1fZQoaAZHQGQBj8+A3DNoB03oA2gIR0CtP+CqQzUJdX2UKGgGR0BkujqdH2AYaAdN6ANoCEdArUFFd3SrpHV9lChoBkdAZpYlZ5iVjmgHTegDaAhHQK1Cu/1QIld1fZQoaAZHQGQ9BHkLhJloB03oA2gIR0CtQs80+C9RdX2UKGgGR0BmBVFa0QbuaAdN6ANoCEdArUZZ5HEuQXV9lChoBkdAZFGBzV+ZxGgHTegDaAhHQK1GnkRSP2h1fZQoaAZHQGGpu/L1VYJoB03oA2gIR0CtqTLleWv9dX2UKGgGR0Bj+TI5o4+9aAdN6ANoCEdAramNfzBhyHV9lChoBkdAXZV/y5I6KmgHTegDaAhHQK2ql36hxo91fZQoaAZHQGR7WGATZg5oB03oA2gIR0CtqthPsRg7dX2UKGgGR0Bk3+dqcmShaAdN6ANoCEdAra0w3T/hl3V9lChoBkdAZYbd69kBjmgHTegDaAhHQK2u9Lg4wRJ1fZQoaAZHQGQQ5/CqIadoB03oA2gIR0CtsiYx+KCQdX2UKGgGR0BwL2J40Mw2aAdNVAFoCEdArbQ0w8GLUHV9lChoBkdAcKez4k/r0WgHTboCaAhHQK215aRp1zR1fZQoaAZHQGKTHEMspXpoB03oA2gIR0CtttnqeK8+dX2UKGgGR0BgwBywOe8PaAdN6ANoCEdArbdXjuKGcnV9lChoBkdAYLhRYRujymgHTegDaAhHQK23z0dRzil1fZQoaAZHQGTRinHeaa1oB03oA2gIR0CtvzvVd5Y6dX2UKGgGR0BlqZiobXHzaAdN6ANoCEdArcDrFGXoknV9lChoBkdAZ7PDUExIrmgHTegDaAhHQK3CcyfL9uR1fZQoaAZHQHJbpgogFHJoB00uAWgIR0CtwwQGOdXldX2UKGgGR0Bl+Q6IWP92aAdN6ANoCEdArcW4dS2phnV9lChoBkdAYtV/IbOu72gHTegDaAhHQK3GBt0mtyR1fZQoaAZHQGOdzi83+/BoB03oA2gIR0Ctyo9Xko4NdX2UKGgGR0Bj8StA9mpVaAdN6ANoCEdArcr1SuQp4XV9lChoBkdAYoJNA1Nxl2gHTegDaAhHQK3MdMnJDE51fZQoaAZHQERW9AX2ugZoB0veaAhHQK3NA2jwhGJ1fZQoaAZHQG+na0Y0l7doB00vAWgIR0CtzyhQ3xWldX2UKGgGR0BnZYGUwBYFaAdN6ANoCEdArc89JBgNPXV9lChoBkdAZE2Zw4sEq2gHTegDaAhHQK3RDe0G/vh1fZQoaAZHQEb8TQE6kqNoB0vsaAhHQK3T8SZBsyl1fZQoaAZHQGLro4+8oQZoB03oA2gIR0Ct1EpT2nKodX2UKGgGR0BiN5wZOzppaAdN6ANoCEdArdZpO58Sf3V9lChoBkdAYa2R+z+m32gHTegDaAhHQK3YWhnJ1aJ1fZQoaAZHQGf07JW/8EVoB03oA2gIR0Ct2YcebNKRdX2UKGgGR0BozwhIOH32aAdN6ANoCEdArdn6COFQEnV9lChoBkdAcpBbnHNorWgHTZcBaAhHQK3czmSyMUB1fZQoaAZHQGVm3FtKqXFoB03oA2gIR0Ct4R5HNHH4dX2UKGgGR0BibDi2lVLjaAdN6ANoCEdAreJnozN2T3V9lChoBkdAZxSrT6SDAmgHTegDaAhHQK3jo1Nxlxx1fZQoaAZHQFJZa8Hv+fhoB0vAaAhHQK3jy7ulXRx1fZQoaAZHQF5UfEXLvCxoB03oA2gIR0Ct5C7uMMqjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5f46ebacebf1d5b4163bd54395b65ea6fde433907be566bd10663dd737f8ca9
|
3 |
+
size 148053
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d5bd3480c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d5bd3480ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d5bd3480d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d5bd3480dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d5bd3480e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d5bd3480ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d5bd3480f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d5bd3481000>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d5bd3481090>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d5bd3481120>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d5bd34811b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d5bd3481240>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d5bd361f980>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003904,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699362335497884678,
|
30 |
+
"learning_rate": 0.00025,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoWkT2DH149Ir5bPjGlV74wLdQ9NxbLPQAAAAAAAAAAwE67PcOdW7rFQEO5cbS8tSHNATsQGyg1AACAPwAAgD8AMBy8FFyiut049zsEBq43uMWpOoDcizYAAIA/AACAP9q0sj17npK61u7aOdgQhrafUys60+LyuAAAgD8AAIA/ACSZPQPGXLwc4AU+MvC+vbL1pb16V5++AACAPwAAgD9m8IK8XKN0un7EDzTi6ymxuzWQOg0C0rMAAIA/AACAP4A5Ej1I/426asm3N8sxxjKvHde6OMvUtgAAgD8AAIA/AKgBO/ZEGborbt46katdNeREsLoa6v+5AACAPwAAgD9maz09ewaXuiYMPTocaiO2oNABOpUTWrkAAIA/AACAP80AlbvDVU+6Ei6QOga5DDYeuR07fp6muQAAgD8AAIA/AFIRvYVD0bk3JYa5J3a8tJAA4TqkZp04AACAPwAAgD8zYBU9trZcvGh6u7sGP0897f0ZvfUUBzwAAIA/AACAP+bfNr32oGi62iWBO94cCTgOKwc7UjI0ugAAgD8AAIA/pmiHPbhexrnFDo+6RIX7szRKHTu/bqc5AACAPwAAgD8AxqY8XDdQuuBcHDhZqIIzsx0QO16bMbcAAIA/AACAP81UsLsp6Bm6CMjZuomICrEqeyi60En9OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0039039999999999075,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHnu/Dcdo6MAWyUTegDjAF0lEdArGruKCQLeHV9lChoBkdAYsQOktVaOmgHTegDaAhHQKxvFmZmZmZ1fZQoaAZHQGL37tZ3cHpoB03oA2gIR0CscIZj6N2ldX2UKGgGR0BhFc1jy4FzaAdN6ANoCEdArHH9TxXnyXV9lChoBkdAY6wUkfLcK2gHTegDaAhHQKx1ihQFcIJ1fZQoaAZHQGPXQ9zOopBoB03oA2gIR0CsdfA8jiXIdX2UKGgGR0A9dSFoL5RCaAdL42gIR0Cseb5tWMjvdX2UKGgGR0Bl19OO801qaAdN6ANoCEdArHwVKh+OO3V9lChoBkdAZaUXD3ueBmgHTegDaAhHQKx9YJBPbfx1fZQoaAZHQGNi624NI9VoB03oA2gIR0CsfumiQDFIdX2UKGgGR0BmFbJZGKAKaAdN6ANoCEdArH7rOTq0MXV9lChoBkdAY+BfD1oQF2gHTegDaAhHQKyDEKLKmsN1fZQoaAZHQGLLsT37DVJoB03oA2gIR0Csg3qj8DSxdX2UKGgGR0BlBRxxT850aAdN6ANoCEdArIO4lnh86XV9lChoBkdAZ8sdmQKa5WgHTegDaAhHQKyFYJuVHFx1fZQoaAZHQGFyrdFfAsVoB03oA2gIR0CsicRbbDdhdX2UKGgGR0Bl+i9RJmNBaAdN6ANoCEdArItEGZ/kNnV9lChoBkdAY9B1Fpfx+mgHTegDaAhHQKyOKNrCWNZ1fZQoaAZHQGVtvA44p+doB03oA2gIR0CskoW56MR6dX2UKGgGR0Bm7BYJVsDXaAdN6ANoCEdArJP/jsD4g3V9lChoBkdAYn6DFqBVdWgHTegDaAhHQKyZC68QI2R1fZQoaAZHQGk5Px6OYIBoB03oA2gIR0CsmXjmbLEDdX2UKGgGR0BjiUyFfzBiaAdN6ANoCEdArJ01S2phnnV9lChoBkdAY4CldkauOmgHTegDaAhHQKyf3CJGe+V1fZQoaAZHQGZJqsuFpPBoB03oA2gIR0CsoYfwZwXJdX2UKGgGR0BhO+CkGiYcaAdN6ANoCEdArKNJosZpBXV9lChoBkdAX29E0BOpKmgHTegDaAhHQKyjSwJPZZl1fZQoaAZHQGCReMyad+ZoB03oA2gIR0Csp09N34bkdX2UKGgGR0BlCRe/pMYeaAdN6ANoCEdArKe1itq59XV9lChoBkdAZKTPSlWOqGgHTegDaAhHQKyn7TWGyop1fZQoaAZHQF92/smfGuNoB03oA2gIR0CsqV4+Sr5qdX2UKGgGR0Bx+axbB42TaAdNzAJoCEdArQo+kWRA8nV9lChoBkdAYyJfiPyTZGgHTegDaAhHQK0KkWepXIV1fZQoaAZHQFtru3+dbxFoB03oA2gIR0CtC7N3fQ8fdX2UKGgGR0BmqC7TUiIMaAdN6ANoCEdArQ4aQV9F4XV9lChoBkdAcStPva11GWgHTWMBaAhHQK0P49vCMxZ1fZQoaAZHQGJmYmsvIwNoB03oA2gIR0CtExLfcer/dX2UKGgGR0BtbVdzGPxQaAdNKwJoCEdArRdOcSXdCXV9lChoBkdAZmFAsTWXkmgHTegDaAhHQK0XnUpd8iR1fZQoaAZHQGhoCz9jwx5oB03oA2gIR0CtF/SNXHR1dX2UKGgGR0Bk4p9b5dnkaAdN6ANoCEdArRvmVNYbKnV9lChoBkdAYY9njABT42gHTegDaAhHQK0ez69kBjp1fZQoaAZHQGcet1QqI8BoB03oA2gIR0CtIJbo0Q9SdX2UKGgGR0BxW1RwZOzqaAdN5gNoCEdArSI91nuiOHV9lChoBkdAX5r07KaG6GgHTegDaAhHQK0iVxFy7wt1fZQoaAZHQGXte98JD3NoB03oA2gIR0CtJoIL5RCQdX2UKGgGR0Boxvl8w5/9aAdN6ANoCEdArSbi66J66nV9lChoBkdAZ1njiGWUr2gHTegDaAhHQK0rUWnCO3l1fZQoaAZHQGZI+717IDJoB03oA2gIR0CtK7NSZSeidX2UKGgGR0BxdLZnL7oCaAdNxgFoCEdArSzOHzpX63V9lChoBkdAYbiHQhOgx2gHTegDaAhHQK0tEws5GSZ1fZQoaAZHQGDrR0dRziloB03oA2gIR0CtL5eKKpDNdX2UKGgGR0BjfWpqASWaaAdN6ANoCEdArTGCqsEJSnV9lChoBkdAYjIb3oLXtmgHTegDaAhHQK00uA6Mir11fZQoaAZHQF73ps41gploB03oA2gIR0CtONl9a2WqdX2UKGgGR0Bj2JNwiqyXaAdN6ANoCEdArTklw5vLo3V9lChoBkdAYsmXCTEBKmgHTegDaAhHQK05f2zv7WN1fZQoaAZHQGQBj8+A3DNoB03oA2gIR0CtP+CqQzUJdX2UKGgGR0BkujqdH2AYaAdN6ANoCEdArUFFd3SrpHV9lChoBkdAZpYlZ5iVjmgHTegDaAhHQK1Cu/1QIld1fZQoaAZHQGQ9BHkLhJloB03oA2gIR0CtQs80+C9RdX2UKGgGR0BmBVFa0QbuaAdN6ANoCEdArUZZ5HEuQXV9lChoBkdAZFGBzV+ZxGgHTegDaAhHQK1GnkRSP2h1fZQoaAZHQGGpu/L1VYJoB03oA2gIR0CtqTLleWv9dX2UKGgGR0Bj+TI5o4+9aAdN6ANoCEdAramNfzBhyHV9lChoBkdAXZV/y5I6KmgHTegDaAhHQK2ql36hxo91fZQoaAZHQGR7WGATZg5oB03oA2gIR0CtqthPsRg7dX2UKGgGR0Bk3+dqcmShaAdN6ANoCEdAra0w3T/hl3V9lChoBkdAZYbd69kBjmgHTegDaAhHQK2u9Lg4wRJ1fZQoaAZHQGQQ5/CqIadoB03oA2gIR0CtsiYx+KCQdX2UKGgGR0BwL2J40Mw2aAdNVAFoCEdArbQ0w8GLUHV9lChoBkdAcKez4k/r0WgHTboCaAhHQK215aRp1zR1fZQoaAZHQGKTHEMspXpoB03oA2gIR0CtttnqeK8+dX2UKGgGR0BgwBywOe8PaAdN6ANoCEdArbdXjuKGcnV9lChoBkdAYLhRYRujymgHTegDaAhHQK23z0dRzil1fZQoaAZHQGTRinHeaa1oB03oA2gIR0CtvzvVd5Y6dX2UKGgGR0BlqZiobXHzaAdN6ANoCEdArcDrFGXoknV9lChoBkdAZ7PDUExIrmgHTegDaAhHQK3CcyfL9uR1fZQoaAZHQHJbpgogFHJoB00uAWgIR0CtwwQGOdXldX2UKGgGR0Bl+Q6IWP92aAdN6ANoCEdArcW4dS2phnV9lChoBkdAYtV/IbOu72gHTegDaAhHQK3GBt0mtyR1fZQoaAZHQGOdzi83+/BoB03oA2gIR0Ctyo9Xko4NdX2UKGgGR0Bj8StA9mpVaAdN6ANoCEdArcr1SuQp4XV9lChoBkdAYoJNA1Nxl2gHTegDaAhHQK3MdMnJDE51fZQoaAZHQERW9AX2ugZoB0veaAhHQK3NA2jwhGJ1fZQoaAZHQG+na0Y0l7doB00vAWgIR0CtzyhQ3xWldX2UKGgGR0BnZYGUwBYFaAdN6ANoCEdArc89JBgNPXV9lChoBkdAZE2Zw4sEq2gHTegDaAhHQK3RDe0G/vh1fZQoaAZHQEb8TQE6kqNoB0vsaAhHQK3T8SZBsyl1fZQoaAZHQGLro4+8oQZoB03oA2gIR0Ct1EpT2nKodX2UKGgGR0BiN5wZOzppaAdN6ANoCEdArdZpO58Sf3V9lChoBkdAYa2R+z+m32gHTegDaAhHQK3YWhnJ1aJ1fZQoaAZHQGf07JW/8EVoB03oA2gIR0Ct2YcebNKRdX2UKGgGR0BozwhIOH32aAdN6ANoCEdArdn6COFQEnV9lChoBkdAcpBbnHNorWgHTZcBaAhHQK3czmSyMUB1fZQoaAZHQGVm3FtKqXFoB03oA2gIR0Ct4R5HNHH4dX2UKGgGR0BibDi2lVLjaAdN6ANoCEdAreJnozN2T3V9lChoBkdAZxSrT6SDAmgHTegDaAhHQK3jo1Nxlxx1fZQoaAZHQFJZa8Hv+fhoB0vAaAhHQK3jy7ulXRx1fZQoaAZHQF5UfEXLvCxoB03oA2gIR0Ct5C7uMMqjdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a1f565591f966a5dd1bbc0602e00cd6bfe68ea334a7c32de628e2e8cc8e3ce5
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ca30157a6c3dfa3b8193788d4cc11a9ba67e97d96bae609a5051845f8951beb
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (163 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.31601040000004, "std_reward": 28.501860171889383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-07T13:48:24.668576"}
|