--- base_model: mistralai/Mistral-7B-Instruct-v0.3 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: pgd_mistral_8bits_lr0.001_alpha16_rk4_do0.1_wd8.0e-04 results: [] --- # pgd_mistral_8bits_lr0.001_alpha16_rk4_do0.1_wd8.0e-04 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.672 | 1.0 | 15 | 1.7538 | | 1.1035 | 2.0 | 30 | 0.8422 | | 0.813 | 3.0 | 45 | 0.7916 | | 0.8166 | 4.0 | 60 | 0.7785 | | 0.7548 | 5.0 | 75 | 0.7543 | ### Framework versions - PEFT 0.12.0 - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1