File size: 1,774 Bytes
3ec38d8
2ed6c27
 
 
 
 
 
 
 
3ec38d8
 
2ed6c27
 
3ec38d8
2ed6c27
3ec38d8
2ed6c27
 
 
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
3ec38d8
2ed6c27
 
 
 
 
 
 
 
 
 
 
 
3ec38d8
2ed6c27
3ec38d8
2ed6c27
 
 
 
 
 
 
3ec38d8
 
2ed6c27
3ec38d8
2ed6c27
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: pgd_mistral_8bits_lr4e-05_alpha16_rk8_do0.1_wd4.0e-02
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pgd_mistral_8bits_lr4e-05_alpha16_rk8_do0.1_wd4.0e-02

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1239

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.1606        | 1.0   | 15   | 3.0926          |
| 3.0951        | 2.0   | 30   | 2.9016          |
| 2.8083        | 3.0   | 45   | 2.5712          |
| 2.4475        | 4.0   | 60   | 2.2442          |
| 2.1898        | 5.0   | 75   | 2.1239          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1