File size: 10,292 Bytes
1f7eddd 5c2d033 1f7eddd 5c2d033 746d6f4 1f7eddd 5c2d033 1f7eddd 746d6f4 5c2d033 bcb1eb7 7bd3ab7 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 746d6f4 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 7bd3ab7 1f7eddd 7bd3ab7 1f7eddd 7bd3ab7 1f7eddd 7bd3ab7 1f7eddd 7bd3ab7 9ab5309 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 7bd3ab7 1f7eddd 7bd3ab7 5c2d033 7bd3ab7 97e861a 8d0d5c1 b2b82d4 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd 5c2d033 1f7eddd a1aa7e9 b2b82d4 a1aa7e9 b2b82d4 a1aa7e9 b2b82d4 a1aa7e9 b2b82d4 a1aa7e9 b2b82d4 a1aa7e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
base_model: google/gemma-2-9b-it
library_name: peft
license: apache-2.0
datasets:
- neo4j/text2cypher-2024v1
language:
- en
pipeline_tag: text2text-generation
tags:
- neo4j
- cypher
- text2cypher
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
This model serves as a demonstration of how fine-tuning foundational models using the Neo4j-Text2Cypher(2024) Dataset ([link](https://huggingface.co/datasets/neo4j/text2cypher-2024v1)) can enhance performance on the Text2Cypher task.\
Please **note**, this is part of ongoing research and exploration, aimed at highlighting the dataset's potential rather than a production-ready solution.
**Base model:** google/gemma-2-9b-it \
**Dataset:** neo4j/text2cypher-2024v1
An overview of the finetuned models and benchmarking results are shared at [Link1](https://medium.com/p/d77be96ab65a) and [Link2](https://medium.com/p/b2203d1173b0)
Have ideas or insights? Contact us: [Neo4j/Team-GenAI](mailto:team-gen-ai@neo4j.com)
<!-- - **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed] -->
<!-- ### Model Sources [optional]
<!-- Provide the basic links for the model. -->
<!-- - **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed] -->
<!-- ## Uses -->
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
<!-- ### Direct Use -->
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- [More Information Needed] -->
<!-- ### Downstream Use [optional] -->
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- [More Information Needed] -->
<!-- ### Out-of-Scope Use
-->
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- [More Information Needed] -->
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
We need to be cautious about a few risks:
* In our evaluation setup, the training and test sets come from the same data distribution (sampled from a larger dataset). If the data distribution changes, the results may not follow the same pattern.
* The datasets used were gathered from publicly available sources. Over time, foundational models may access both the training and test sets, potentially achieving similar or even better results.
Also check the related blogpost:[Link](Thttps://medium.com/p/b2203d1173b0)
<!-- ### Recommendations -->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. -->
<!-- ## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed] -->
## Training Details
<!-- ### Training Data -->
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
<!-- [More Information Needed]-->
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Used RunPod with following setup:
* 1 x A100 PCIe
* 31 vCPU 117 GB RAM
* runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04
* On-Demand - Secure Cloud
* 60 GB Disk
* 60 GB Pod Volume
<!-- * ~16 hours
* $30 -->
<!-- #### Preprocessing [optional]
[More Information Needed]
-->
#### Training Hyperparameters
<!-- - **Training regime:** -->
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
* lora_config = LoraConfig(
r=64,
lora_alpha=64,
target_modules=target_modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
* sft_config = SFTConfig(
dataset_text_field=dataset_text_field,
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
dataset_num_proc=16,
max_seq_length=1600,
logging_dir="./logs",
num_train_epochs=1,
learning_rate=2e-5,
save_steps=5,
save_total_limit=1,
logging_steps=5,
output_dir="outputs",
optim="paged_adamw_8bit",
save_strategy="steps",
)
* bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
<!-- #### Speeds, Sizes, Times [optional] -->
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
<!-- [More Information Needed] -->
<!-- ## Evaluation -->
<!-- This section describes the evaluation protocols and provides the results. -->
<!-- ### Testing Data, Factors & Metrics -->
<!-- #### Testing Data -->
<!-- This should link to a Dataset Card if possible. -->
<!-- [More Information Needed] -->
<!-- #### Factors -->
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
<!-- [More Information Needed]
#### Metrics -->
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
<!-- [More Information Needed]
### Results
[More Information Needed]
#### Summary -->
<!-- ## Model Examination [optional]
-->
<!-- Relevant interpretability work for the model goes here -->
<!-- [More Information Needed]
## Environmental Impact -->
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
<!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]-->
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
<!-- **BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional] -->
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
<!-- [More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] -->
### Framework versions
- PEFT 0.12.0
### Example Cypher generation
```
from peft import PeftModel, PeftConfig
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
instruction = (
"Generate Cypher statement to query a graph database. "
"Use only the provided relationship types and properties in the schema. \n"
"Schema: {schema} \n Question: {question} \n Cypher output: "
)
def prepare_chat_prompt(question, schema) -> list[dict]:
chat = [
{
"role": "user",
"content": instruction.format(
schema=schema, question=question
),
}
]
return chat
def _postprocess_output_cypher(output_cypher: str) -> str:
# Remove any explanation. E.g. MATCH...\n\n**Explanation:**\n\n -> MATCH...
# Remove cypher indicator. E.g.```cypher\nMATCH...```` --> MATCH...
# Note: Possible to have both:
# E.g. ```cypher\nMATCH...````\n\n**Explanation:**\n\n --> MATCH...
partition_by = "**Explanation:**"
output_cypher, _, _ = output_cypher.partition(partition_by)
output_cypher = output_cypher.strip("`\n")
output_cypher = output_cypher.lstrip("cypher\n")
output_cypher = output_cypher.strip("`\n ")
return output_cypher
# Model
model_name = "neo4j/text2cypher-gemma-2-9b-it-finetuned-2024v1"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
attn_implementation="eager",
low_cpu_mem_usage=True,
)
# Question
question = "What are the movies of Tom Hanks?"
schema = "(:Actor)-[:ActedIn]->(:Movie)"
new_message = prepare_chat_prompt(question=question, schema=schema)
prompt = tokenizer.apply_chat_template(new_message, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
# Any other parameters
model_generate_parameters = {
"top_p": 0.9,
"temperature": 0.2,
"max_new_tokens": 512,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
inputs.to(model.device)
model.eval()
with torch.no_grad():
tokens = model.generate(**inputs, **model_generate_parameters)
tokens = tokens[:, inputs.input_ids.shape[1] :]
raw_outputs = tokenizer.batch_decode(tokens, skip_special_tokens=True)
outputs = [_postprocess_output_cypher(output) for output in raw_outputs]
print(outputs)
> ["MATCH (a:Actor {Name: 'Tom Hanks'})-[:ActedIn]->(m:Movie) RETURN m"]
``` |