File size: 4,872 Bytes
e9a58c6 aa46e84 a25ce91 4297946 a25ce91 4297946 aa46e84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
license: mit
tags:
- ecology
- sustainability
- ecolinguistics
- dpo
datasets:
- neovalle/H4rmony_dpo
model-index:
- name: H4rmoniousAnthea
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.08
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=neovalle/H4rmoniousAnthea
name: Open LLM Leaderboard
---
# Model Details
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aac16fd4a402e8dce11ebe/ERb9aFX_yeDlmqqnvQHF_.png)
# Model Description
This model is based on teknium/OpenHermes-2.5-Mistral-7B, DPO fine-tuned with the H4rmony_dpo dataset.
Its completions should be more ecologically aware than the base model.
Developed by: Jorge Vallego
Funded by : Neovalle Ltd.
Shared by : airesearch@neovalle.co.uk
Model type: mistral
Language(s) (NLP): Primarily English
License: MIT
Finetuned from model: teknium/OpenHermes-2.5-Mistral-7B
Methodology: DPO
# Uses
Intended as PoC to show the effects of H4rmony_dpo dataset with DPO fine-tuning.
# Direct Use
For testing purposes to gain insight in order to help with the continous improvement of the H4rmony_dpo dataset.
# Downstream Use
Its direct use in applications is not recommended as this model is under testing for a specific task only (Ecological Alignment)
Out-of-Scope Use
Not meant to be used other than testing and evaluation of the H4rmony_dpo dataset and ecological alignment.
Bias, Risks, and Limitations
This model might produce biased completions already existing in the base model, and others unintentionally introduced during fine-tuning.
# How to Get Started with the Model
It can be loaded and run in a Colab instance with High RAM.
# Training Details
Trained using DPO
# Training Data
H4rmony Dataset - https://huggingface.co/datasets/neovalle/H4rmony_dpo
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_neovalle__H4rmoniousAnthea)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.76|
|AI2 Reasoning Challenge (25-Shot)|65.87|
|HellaSwag (10-Shot) |84.09|
|MMLU (5-Shot) |63.67|
|TruthfulQA (0-shot) |55.08|
|Winogrande (5-shot) |76.87|
|GSM8k (5-shot) |12.96|
|