update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: prot_bert_classification_finetuned_karolina_es_20e
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# prot_bert_classification_finetuned_karolina_es_20e
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nepp1d0/prot_bert-finetuned-smiles-bindingDB](https://huggingface.co/nepp1d0/prot_bert-finetuned-smiles-bindingDB) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6763
|
22 |
+
- Accuracy: 0.92
|
23 |
+
- F1: 0.9583
|
24 |
+
- Precision: 1.0
|
25 |
+
- Recall: 0.92
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-06
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 3
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| No log | 1.0 | 2 | 0.7084 | 0.02 | 0.0392 | 1.0 | 0.02 |
|
58 |
+
| No log | 2.0 | 4 | 0.7082 | 0.02 | 0.0392 | 1.0 | 0.02 |
|
59 |
+
| No log | 3.0 | 6 | 0.7078 | 0.04 | 0.0769 | 1.0 | 0.04 |
|
60 |
+
| No log | 4.0 | 8 | 0.7072 | 0.04 | 0.0769 | 1.0 | 0.04 |
|
61 |
+
| No log | 5.0 | 10 | 0.7065 | 0.04 | 0.0769 | 1.0 | 0.04 |
|
62 |
+
| No log | 6.0 | 12 | 0.7055 | 0.04 | 0.0769 | 1.0 | 0.04 |
|
63 |
+
| No log | 7.0 | 14 | 0.7044 | 0.04 | 0.0769 | 1.0 | 0.04 |
|
64 |
+
| No log | 8.0 | 16 | 0.7031 | 0.06 | 0.1132 | 1.0 | 0.06 |
|
65 |
+
| No log | 9.0 | 18 | 0.7017 | 0.12 | 0.2143 | 1.0 | 0.12 |
|
66 |
+
| No log | 10.0 | 20 | 0.6999 | 0.2 | 0.3333 | 1.0 | 0.2 |
|
67 |
+
| No log | 11.0 | 22 | 0.6981 | 0.22 | 0.3607 | 1.0 | 0.22 |
|
68 |
+
| No log | 12.0 | 24 | 0.6962 | 0.22 | 0.3607 | 1.0 | 0.22 |
|
69 |
+
| No log | 13.0 | 26 | 0.6941 | 0.24 | 0.3871 | 1.0 | 0.24 |
|
70 |
+
| No log | 14.0 | 28 | 0.6917 | 0.44 | 0.6111 | 1.0 | 0.44 |
|
71 |
+
| No log | 15.0 | 30 | 0.6893 | 0.58 | 0.7342 | 1.0 | 0.58 |
|
72 |
+
| No log | 16.0 | 32 | 0.6869 | 0.76 | 0.8636 | 1.0 | 0.76 |
|
73 |
+
| No log | 17.0 | 34 | 0.6842 | 0.88 | 0.9362 | 1.0 | 0.88 |
|
74 |
+
| No log | 18.0 | 36 | 0.6816 | 0.9 | 0.9474 | 1.0 | 0.9 |
|
75 |
+
| No log | 19.0 | 38 | 0.6789 | 0.92 | 0.9583 | 1.0 | 0.92 |
|
76 |
+
| No log | 20.0 | 40 | 0.6763 | 0.92 | 0.9583 | 1.0 | 0.92 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.23.1
|
82 |
+
- Pytorch 1.11.0
|
83 |
+
- Datasets 2.6.1
|
84 |
+
- Tokenizers 0.13.1
|