|
import os |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import librosa |
|
import numpy as np |
|
import soundfile as sf |
|
import torch |
|
from tqdm import tqdm |
|
|
|
cpu = torch.device("cpu") |
|
|
|
|
|
class ConvTDFNetTrim: |
|
def __init__( |
|
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024 |
|
): |
|
super(ConvTDFNetTrim, self).__init__() |
|
|
|
self.dim_f = dim_f |
|
self.dim_t = 2**dim_t |
|
self.n_fft = n_fft |
|
self.hop = hop |
|
self.n_bins = self.n_fft // 2 + 1 |
|
self.chunk_size = hop * (self.dim_t - 1) |
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to( |
|
device |
|
) |
|
self.target_name = target_name |
|
self.blender = "blender" in model_name |
|
|
|
self.dim_c = 4 |
|
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c |
|
self.freq_pad = torch.zeros( |
|
[1, out_c, self.n_bins - self.dim_f, self.dim_t] |
|
).to(device) |
|
|
|
self.n = L // 2 |
|
|
|
def stft(self, x): |
|
x = x.reshape([-1, self.chunk_size]) |
|
x = torch.stft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop, |
|
window=self.window, |
|
center=True, |
|
return_complex=True, |
|
) |
|
x = torch.view_as_real(x) |
|
x = x.permute([0, 3, 1, 2]) |
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, self.dim_c, self.n_bins, self.dim_t] |
|
) |
|
return x[:, :, : self.dim_f] |
|
|
|
def istft(self, x, freq_pad=None): |
|
freq_pad = ( |
|
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) |
|
if freq_pad is None |
|
else freq_pad |
|
) |
|
x = torch.cat([x, freq_pad], -2) |
|
c = 4 * 2 if self.target_name == "*" else 2 |
|
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, 2, self.n_bins, self.dim_t] |
|
) |
|
x = x.permute([0, 2, 3, 1]) |
|
x = x.contiguous() |
|
x = torch.view_as_complex(x) |
|
x = torch.istft( |
|
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True |
|
) |
|
return x.reshape([-1, c, self.chunk_size]) |
|
|
|
|
|
def get_models(device, dim_f, dim_t, n_fft): |
|
return ConvTDFNetTrim( |
|
device=device, |
|
model_name="Conv-TDF", |
|
target_name="vocals", |
|
L=11, |
|
dim_f=dim_f, |
|
dim_t=dim_t, |
|
n_fft=n_fft, |
|
) |
|
|
|
|
|
class Predictor: |
|
def __init__(self, args): |
|
import onnxruntime as ort |
|
|
|
logger.info(ort.get_available_providers()) |
|
self.args = args |
|
self.model_ = get_models( |
|
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft |
|
) |
|
self.model = ort.InferenceSession( |
|
os.path.join(args.onnx, self.model_.target_name + ".onnx"), |
|
providers=[ |
|
"CUDAExecutionProvider", |
|
"DmlExecutionProvider", |
|
"CPUExecutionProvider", |
|
], |
|
) |
|
logger.info("ONNX load done") |
|
|
|
def demix(self, mix): |
|
samples = mix.shape[-1] |
|
margin = self.args.margin |
|
chunk_size = self.args.chunks * 44100 |
|
assert not margin == 0, "margin cannot be zero!" |
|
if margin > chunk_size: |
|
margin = chunk_size |
|
|
|
segmented_mix = {} |
|
|
|
if self.args.chunks == 0 or samples < chunk_size: |
|
chunk_size = samples |
|
|
|
counter = -1 |
|
for skip in range(0, samples, chunk_size): |
|
counter += 1 |
|
|
|
s_margin = 0 if counter == 0 else margin |
|
end = min(skip + chunk_size + margin, samples) |
|
|
|
start = skip - s_margin |
|
|
|
segmented_mix[skip] = mix[:, start:end].copy() |
|
if end == samples: |
|
break |
|
|
|
sources = self.demix_base(segmented_mix, margin_size=margin) |
|
""" |
|
mix:(2,big_sample) |
|
segmented_mix:offset->(2,small_sample) |
|
sources:(1,2,big_sample) |
|
""" |
|
return sources |
|
|
|
def demix_base(self, mixes, margin_size): |
|
chunked_sources = [] |
|
progress_bar = tqdm(total=len(mixes)) |
|
progress_bar.set_description("Processing") |
|
for mix in mixes: |
|
cmix = mixes[mix] |
|
sources = [] |
|
n_sample = cmix.shape[1] |
|
model = self.model_ |
|
trim = model.n_fft // 2 |
|
gen_size = model.chunk_size - 2 * trim |
|
pad = gen_size - n_sample % gen_size |
|
mix_p = np.concatenate( |
|
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 |
|
) |
|
mix_waves = [] |
|
i = 0 |
|
while i < n_sample + pad: |
|
waves = np.array(mix_p[:, i : i + model.chunk_size]) |
|
mix_waves.append(waves) |
|
i += gen_size |
|
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu) |
|
with torch.no_grad(): |
|
_ort = self.model |
|
spek = model.stft(mix_waves) |
|
if self.args.denoise: |
|
spec_pred = ( |
|
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 |
|
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 |
|
) |
|
tar_waves = model.istft(torch.tensor(spec_pred)) |
|
else: |
|
tar_waves = model.istft( |
|
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) |
|
) |
|
tar_signal = ( |
|
tar_waves[:, :, trim:-trim] |
|
.transpose(0, 1) |
|
.reshape(2, -1) |
|
.numpy()[:, :-pad] |
|
) |
|
|
|
start = 0 if mix == 0 else margin_size |
|
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size |
|
if margin_size == 0: |
|
end = None |
|
sources.append(tar_signal[:, start:end]) |
|
|
|
progress_bar.update(1) |
|
|
|
chunked_sources.append(sources) |
|
_sources = np.concatenate(chunked_sources, axis=-1) |
|
|
|
progress_bar.close() |
|
return _sources |
|
|
|
def prediction(self, m, vocal_root, others_root, format): |
|
os.makedirs(vocal_root, exist_ok=True) |
|
os.makedirs(others_root, exist_ok=True) |
|
basename = os.path.basename(m) |
|
mix, rate = librosa.load(m, mono=False, sr=44100) |
|
if mix.ndim == 1: |
|
mix = np.asfortranarray([mix, mix]) |
|
mix = mix.T |
|
sources = self.demix(mix.T) |
|
opt = sources[0].T |
|
if format in ["wav", "flac"]: |
|
sf.write( |
|
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate |
|
) |
|
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate) |
|
else: |
|
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename) |
|
path_other = "%s/%s_others.wav" % (others_root, basename) |
|
sf.write(path_vocal, mix - opt, rate) |
|
sf.write(path_other, opt, rate) |
|
if os.path.exists(path_vocal): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path_vocal, path_vocal[:-4] + ".%s" % format) |
|
) |
|
if os.path.exists(path_other): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path_other, path_other[:-4] + ".%s" % format) |
|
) |
|
|
|
|
|
class MDXNetDereverb: |
|
def __init__(self, chunks, device): |
|
self.onnx = "assets/uvr5_weights/onnx_dereverb_By_FoxJoy" |
|
self.shifts = 10 |
|
self.mixing = "min_mag" |
|
self.chunks = chunks |
|
self.margin = 44100 |
|
self.dim_t = 9 |
|
self.dim_f = 3072 |
|
self.n_fft = 6144 |
|
self.denoise = True |
|
self.pred = Predictor(self) |
|
self.device = device |
|
|
|
def path_audio(self, input, vocal_root, others_root, format): |
|
self.pred.prediction(input, vocal_root, others_root, format) |
|
|