File size: 9,913 Bytes
12bee07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# coding=utf-8
import pandas as pd
import os
import numpy as np
import subprocess
import shutil
""" Library for general utils, such as dataframe properties checking,
creating directories, checking files, etc.
"""
def check_expected_columns(df: pd.DataFrame, expected_columns: list) -> bool:
"""
Checks if a DataFrame contains the expected columns.
Parameters
----------
df : pd.DataFrame
The input DataFrame to be checked.
expected_columns : list
A list of columns that are expected to be present in the DataFrame.
Returns
-------
bool
True if all expected columns are present in the DataFrame, False otherwise.
Raises
------
ValueError
If any of the expected columns are not present in the DataFrame.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
>>> check_expected_columns(df, ['A', 'B'])
True
>>> check_expected_columns(df, ['A', 'C'])
ValueError: The following columns are missing: ['C']
"""
missing_columns = [col for col in expected_columns if col not in df.columns]
if missing_columns:
raise ValueError(f"The following columns are missing: {missing_columns}")
return True
def is_valid_primary_key(df: pd.DataFrame, column_name: str) -> bool:
"""
Checks if a specified column in a DataFrame can serve as a valid primary key.
Parameters
----------
df : pd.DataFrame
The input DataFrame to be checked.
column_name : str
The name of the column to check.
Returns
-------
bool
True if the column can serve as a valid primary key, False otherwise.
Raises
------
ValueError
If the specified column does not exist in the DataFrame.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
>>> is_valid_primary_key(df, 'A')
True
>>> df = pd.DataFrame({'A': [1, 2, 2], 'B': [4, 5, 6]})
>>> is_valid_primary_key(df, 'A')
False
"""
if column_name not in df.columns:
raise ValueError(f"Column '{column_name}' does not exist in the DataFrame.")
# Check for NaN values
if df[column_name].isnull().any():
return False
# Check for unique values
if not df[column_name].is_unique:
return False
return True
def get_non_empty_files(start_path: str, extensions: tuple = ('.fasta', '.fna')) -> str:
"""
Generator that yields non-empty files from a specified directory and its subdirectories based on the given extensions.
:param start_path: The path to the directory from which to start the search.
:type start_path: str
:param extensions: A tuple of file extensions to look for (default is ('.fasta', '.fna')).
The function also automatically checks for compressed versions with '.gz'.
:type extensions: tuple
:return: Yields filenames that match the specified extensions and are non-empty.
:rtype: str
"""
for dirpath, _, filenames in os.walk(start_path):
for filename in filenames:
filepath = os.path.join(dirpath, filename)
if any(filename.endswith(ext) or filename.endswith(ext + '.gz') for ext in extensions) and os.path.getsize(filepath) > 0:
yield filename
def truncate_zero_columns(arr: np.ndarray) -> np.ndarray:
"""
Truncate all trailing columns composed entirely of zeros in a given 2D numpy array.
:param arr: Input 2D numpy array.
:type arr: np.ndarray
:return: A new array with trailing zero columns removed.
:rtype: np.ndarray
"""
# Iterate over columns from the end
for idx in range(arr.shape[1]-1, -1, -1):
if np.any(arr[:, idx]):
return arr[:, :(idx+1)]
return np.empty((arr.shape[0], 0))
import os
def create_directory_for_filepath(filepath: str) -> None:
"""
Given a file path, creates the underlying directory structure if it doesn't already exist.
Args:
filepath (str): The path to the file for which the directory structure should be created.
Raises:
ValueError: If the provided path is empty or None.
OSError: If there's an error creating the directory structure.
"""
if not filepath:
raise ValueError("The provided filepath is empty or None.")
directory = os.path.dirname(filepath)
if directory and not os.path.exists(directory):
try:
os.makedirs(directory)
print(f"Directory structure {directory} created successfully.")
except OSError as e:
raise OSError(f"Error creating directory structure {directory}. Error: {e}")
# Example usage:
# create_directory_for_filepath("/path/to/directory/that/might/not/exist/filename.txt")
def check_file_exists(file_path: str) -> bool:
"""
Checks if the provided file path exists.
Args:
file_path (str): Path to the file.
Returns:
bool: True if the file exists, raises ValueError otherwise.
"""
if os.path.exists(file_path):
return True
else:
raise ValueError(f"The provided file path '{file_path}' does not exist.")
def count_gpus():
# Count NVIDIA GPUs
import torch
nvidia_gpu_count = torch.cuda.device_count()
# Count AMD GPUs
amd_gpu_count = 0
try:
clinfo_output = subprocess.check_output('clinfo').decode('utf-8')
amd_gpu_count = clinfo_output.count('Device Type: GPU')
except:
pass # clinfo command might not be available
total_gpus = nvidia_gpu_count + amd_gpu_count
return total_gpus
def create_hard_links(source_directory: str, target_directory: str, blacklist: list = []) -> None:
"""
Creates hard links for all files from the source directory to the target directory.
Args:
source_directory (str): The directory containing the original files.
target_directory (str): The directory where hard links will be created.
blacklist (list): List of filenames to exclude from creating hard links.
Returns:
None
"""
# Ensure the provided directories exist
if not os.path.exists(source_directory):
raise ValueError(f"The source directory '{source_directory}' does not exist.")
if not os.path.exists(target_directory):
os.makedirs(target_directory)
# Iterate through the files in the source directory
for filename in os.listdir(source_directory):
source_file_path = os.path.join(source_directory, filename)
target_file_path = os.path.join(target_directory, filename)
# Check for files to skip
if (filename.startswith('.') or
filename.startswith('_') or
os.path.isdir(source_file_path) or
filename in blacklist):
continue
# Create a hard link
os.link(source_file_path, target_file_path)
return f"Hard links created in {target_directory} from {source_directory}."
# Example usage
# create_hard_links("/path/to/source_directory", "/path/to/target_directory", blacklist=["file_to_skip.txt"])
def create_selected_hard_links(source_directory: str, target_directory: str, filenames: list) -> None:
"""
Creates hard links for the specified files from the source directory to the target directory.
Args:
source_directory (str): The directory containing the original files.
target_directory (str): The directory where hard links will be created.
filenames (list): List of filenames for which hard links should be created.
Returns:
None
"""
# Ensure the provided directories exist
if not os.path.exists(source_directory):
raise ValueError(f"The source directory '{source_directory}' does not exist.")
if not os.path.exists(target_directory):
os.makedirs(target_directory)
# Iterate through the specified filenames
for filename in filenames:
source_file_path = os.path.join(source_directory, filename)
target_file_path = os.path.join(target_directory, filename)
# Ensure the file exists in the source directory
if not os.path.isfile(source_file_path):
print(f"Warning: {filename} does not exist in the source directory. Skipping.")
continue
# Create a hard link
try:
os.link(source_file_path, target_file_path)
except FileExistsError:
print(f'The target hard link {target_file_path} exist. Skipping...')
return f"Hard links for specified files created in {target_directory} from {source_directory}."
def remove_hidden_files(directory: str) -> None:
"""
Removes all files recursively in a folder that start with '.' or '_'.
Args:
directory (str): The directory from which hidden files should be removed.
Returns:
None
"""
# Ensure the directory exists
if not os.path.exists(directory):
raise ValueError(f"The directory '{directory}' does not exist.")
# Use os.walk to iterate through all subdirectories and files
for dirpath, dirnames, filenames in os.walk(directory, topdown=False):
# Filter out directories starting with '.' or '_'
dirnames[:] = [d for d in dirnames if not d.startswith('.') and not d.startswith('_')]
# Remove files starting with '.' or '_'
for filename in filenames:
if filename.startswith('.') or filename.startswith('_'):
file_path = os.path.join(dirpath, filename)
os.remove(file_path)
print(f"Removed: {file_path}")
print(f"All hidden files removed from {directory}.") |