File size: 19,756 Bytes
12bee07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Config utils
import yaml
import pathlib
from os.path import join
import os
import numpy as np
import torch
from multiprocessing import cpu_count
class BaseConfig:
"""Base class for managing and validating configurations."""
numpy_dtype_mapping = {1: np.int8,
2: np.int16,
8: np.int64,
4: np.int32}
def __init__(self):
super().__init__()
def cast_to_expected_type(self, parameter_class: str, parameter_name: str, value: any) -> any:
"""
Cast the given value to the expected type.
:param parameter_class: The class/category of the parameter.
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:param value: The value to be casted.
:type value: any
:return: Value casted to the expected type.
:rtype: any
:raises ValueError: If casting fails.
"""
expected_type = self.parameters[parameter_class][parameter_name]['type']
if expected_type in ["integer", "int"]:
try:
return int(value)
except ValueError:
raise ValueError(f"Failed to cast value '{value}' to integer for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type == "float":
try:
return float(value)
except ValueError:
raise ValueError(f"Failed to cast value '{value}' to float for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type in ["string", "str"]:
return str(value)
elif expected_type in ["boolean", "bool"]:
if isinstance(value, bool):
return value
elif str(value).lower() == "true":
return True
elif str(value).lower() == "false":
return False
else:
raise ValueError(f"Failed to cast value '{value}' to boolean for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type == "type":
# For this type, we will simply return the value without casting.
# It assumes the configuration provides valid Python types.
return value
elif expected_type == "list":
if isinstance(value, list):
return value
else:
raise ValueError(f"Failed to validate value '{value}' as a list for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type == "tuple":
if isinstance(value, tuple):
return value
else:
raise ValueError(f"Failed to validate value '{value}' as a tuple for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type == "set":
if isinstance(value, set):
return value
else:
raise ValueError(f"Failed to validate value '{value}' as a set for parameter '{parameter_name}' in class '{parameter_class}'.")
elif expected_type == "dict":
if isinstance(value, dict):
return value
else:
raise ValueError(f"Failed to validate value '{value}' as a dict for parameter '{parameter_name}' in class '{parameter_class}'.")
else:
raise ValueError(f"Unknown expected type '{expected_type}' for parameter '{parameter_name}' in class '{parameter_class}'.")
def get_parameter(self, parameter_class: str, parameter_name: str) -> any:
"""
Retrieve the default value of a specified parameter.
:param parameter_class: The class/category of the parameter (e.g., 'segmentation').
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:return: Default value of the parameter, casted to the expected type.
:rtype: any
"""
default_value = self.parameters[parameter_class][parameter_name]['default']
return self.cast_to_expected_type(parameter_class, parameter_name, default_value)
def validate_type(self, parameter_class: str, parameter_name: str, value: any) -> bool:
"""
Validate the type of a given value against the expected type.
:param parameter_class: The class/category of the parameter.
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:param value: The value to be validated.
:type value: any
:return: True if the value is of the expected type, otherwise False.
:rtype: bool
"""
expected_type = self.parameters[parameter_class][parameter_name]['type']
if expected_type == "integer" and not isinstance(value, int):
return False
elif expected_type == "float" and not isinstance(value, float):
return False
elif expected_type == "string" and not isinstance(value, str):
return False
else:
return True
def validate_value(self, parameter_class: str, parameter_name: str, value: any) -> bool:
"""
Validate the value of a parameter against its constraints.
:param parameter_class: The class/category of the parameter.
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:param value: The value to be validated.
:type value: any
:return: True if the value meets the constraints, otherwise False.
:rtype: bool
"""
constraints = self.parameters[parameter_class][parameter_name].get('constraints', {})
if 'options' in constraints and value not in constraints['options']:
return False
if 'min' in constraints and value < constraints['min']:
return False
if 'max' in constraints and value > constraints['max']:
return False
return True
def validate(self, parameter_class: str, parameter_name: str, value: any):
"""
Validate both the type and value of a parameter.
:param parameter_class: The class/category of the parameter.
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:param value: The value to be validated.
:type value: any
:raises TypeError: If the value is not of the expected type.
:raises ValueError: If the value does not meet the parameter's constraints.
"""
if not self.validate_type(parameter_class, parameter_name, value):
raise TypeError(f"Invalid type for {parameter_name} for parameter class '{parameter_class}'. Expected {self.parameters[parameter_class][parameter_name]['type']}.")
if not self.validate_value(parameter_class, parameter_name, value):
raise ValueError(f"Invalid value for {parameter_name} for parameter class '{parameter_class}'. Constraints: {self.parameters[parameter_class][parameter_name].get('constraints', {})}.")
def describe(self, parameter_class: str, parameter_name: str) -> str:
"""
Retrieve the description of a parameter.
:param parameter_class: The class/category of the parameter.
:type parameter_class: str
:param parameter_name: The name of the parameter.
:type parameter_name: str
:return: Description of the parameter.
:rtype: str
"""
return self.parameters[parameter_class][parameter_name]['description']
class SeqConfig(BaseConfig):
"""Class to manage and validate sequence processing configurations."""
def __init__(self):
super().__init__()
self.default_seq_config_file = self._get_default_sequence_processing_config_file()
with open(self.default_seq_config_file, 'r') as file:
self.parameters = yaml.safe_load(file)
# Some postprocessing steps
self.parameters['tokenization']['shift']['constraints']['max'] = self.parameters['tokenization']['kmer']['default']-1
# Ha valaki update-li a k-mer paramter-t, akkor triggerelni kellene, hogy mi legyen.
self.get_and_set_segmentation_parameters()
self.get_and_set_tokenization_parameters()
self.get_and_set_computational_parameters()
def _get_default_sequence_processing_config_file(self) -> str:
"""
Retrieve the default sequence processing configuration file.
:return: Path to the configuration file.
:rtype: str
"""
current_path = pathlib.Path(__file__).parent
prokbert_seq_config_file = join(current_path, 'configs', 'sequence_processing.yaml')
self.current_path = current_path
try:
# Attempt to read the environment variable
prokbert_seq_config_file = os.environ['SEQ_CONFIG_FILE']
except KeyError:
# Handle the case when the environment variable is not found
print("SEQ_CONFIG_FILE environment variable has not been set. Using default value: {0}".format(prokbert_seq_config_file))
return prokbert_seq_config_file
def get_and_set_segmentation_parameters(self, parameters: dict = {}) -> dict:
"""
Retrieve and validate the provided parameters for segmentation.
:param parameters: A dictionary of parameters to be validated.
:type parameters: dict
:return: A dictionary of validated segmentation parameters.
:rtype: dict
:raises ValueError: If an invalid segmentation parameter is provided.
"""
segmentation_params = {k: self.get_parameter('segmentation', k) for k in self.parameters['segmentation']}
for param, param_value in parameters.items():
if param not in segmentation_params:
raise ValueError(f"The provided {param} is an INVALID segmentation parameter! The valid parameters are: {list(segmentation_params.keys())}")
self.validate('segmentation', param, param_value)
segmentation_params[param] = param_value
self.segmentation_params = segmentation_params
return segmentation_params
def get_and_set_tokenization_parameters(self, parameters: dict = {}) -> dict:
# Updating the other parameters if necesseary, i.e. if k-mer has-been changed, then the shift is updated and we run a parameter check at the end
tokenization_params = {k: self.get_parameter('tokenization', k) for k in self.parameters['tokenization']}
for param, param_value in parameters.items():
if param not in tokenization_params:
raise ValueError(f"The provided {param} is an INVALID tokenization parameter! The valid parameters are: {list(tokenization_params.keys())}")
self.validate('tokenization', param, param_value)
tokenization_params[param] = param_value
# Loading and check the vocab file. It is assumed that its ordered dictionary
vocabfile=tokenization_params['vocabfile']
act_kmer = tokenization_params['kmer']
if vocabfile=='auto':
print(self.current_path)
vocabfile_path = join(self.current_path, 'data/prokbert_vocabs/', f'prokbert-base-dna{act_kmer}', 'vocab.txt')
tokenization_params['vocabfile'] = vocabfile_path
else:
vocabfile_path = vocabfile
with open(vocabfile_path) as vocabfile_in:
vocabmap = {line.strip(): i for i, line in enumerate(vocabfile_in)}
tokenization_params['vocabmap'] = vocabmap
# Loading the vocab
self.tokenization_params = tokenization_params
return tokenization_params
def get_and_set_computational_parameters(self, parameters: dict = {}) -> dict:
""" Reading and validating the computational paramters
"""
computational_params = {k: self.get_parameter('computation', k) for k in self.parameters['computation']}
core_count = cpu_count()
if computational_params['cpu_cores_for_segmentation'] == -1:
computational_params['cpu_cores_for_segmentation'] = core_count
if computational_params['cpu_cores_for_tokenization'] == -1:
computational_params['cpu_cores_for_tokenization'] = core_count
for param, param_value in parameters.items():
if param not in computational_params:
raise ValueError(f"The provided {param} is an INVALID computation parameter! The valid parameters are: {list(computational_params.keys())}")
self.validate('computation', param, param_value)
computational_params[param] = param_value
np_tokentype= SeqConfig.numpy_dtype_mapping[computational_params['numpy_token_integer_prec_byte']]
computational_params['np_tokentype'] = np_tokentype
self.computational_params = computational_params
return computational_params
def get_maximum_segment_length_from_token_count_from_params(self):
"""Calculating the maximum length of the segment from the token count """
max_token_counts = self.tokenization_params['token_limit']
shift = self.tokenization_params['shift']
kmer = self.tokenization_params['kmer']
return self.get_maximum_segment_length_from_token_count(max_token_counts, shift, kmer)
def get_maximum_token_count_from_max_length_from_params(self):
"""Calculating the maximum length of the segment from the token count """
max_segment_length = self.tokenization_params['max_segment_length']
shift = self.tokenization_params['shift']
kmer = self.tokenization_params['kmer']
max_token_count = self.get_maximum_token_count_from_max_length(max_segment_length, shift, kmer)
return max_token_count
@staticmethod
def get_maximum_segment_length_from_token_count(max_token_counts, shift, kmer):
"""Calcuates how long sequence can be covered
"""
max_segment_length = (max_token_counts-3)*shift + kmer
return max_segment_length
@staticmethod
def get_maximum_token_count_from_max_length(max_segment_length, shift, kmer):
"""Calcuates how long sequence can be covered
"""
max_token_count = int(np.ceil((max_segment_length - kmer)/shift+3))
return max_token_count
class ProkBERTConfig(BaseConfig):
"""Class to manage and validate pretraining configurations."""
torch_dtype_mapping = {1: torch.uint8,
2: torch.int16,
8: torch.int64,
4: torch.int32}
def __init__(self):
super().__init__()
self.default_pretrain_config_file = self._get_default_pretrain_config_file()
with open(self.default_pretrain_config_file, 'r') as file:
self.parameters = yaml.safe_load(file)
# Load and validate each parameter set
self.data_collator_params = self.get_set_parameters('data_collator')
self.model_params = self.get_set_parameters('model')
self.dataset_params = self.get_set_parameters('dataset')
self.pretraining_params = self.get_set_parameters('pretraining')
# Getting the sequtils params as well
self.def_seq_config = SeqConfig()
self.segmentation_params = self.def_seq_config.get_and_set_segmentation_parameters(self.parameters['segmentation'])
self.tokenization_params = self.def_seq_config.get_and_set_tokenization_parameters(self.parameters['tokenization'])
self.computation_params = self.def_seq_config.get_and_set_computational_parameters(self.parameters['computation'])
self.default_torchtype = ProkBERTConfig.torch_dtype_mapping[self.computation_params['numpy_token_integer_prec_byte']]
def _get_default_pretrain_config_file(self) -> str:
"""
Retrieve the default pretraining configuration file.
:return: Path to the configuration file.
:rtype: str
"""
current_path = pathlib.Path(__file__).parent
pretrain_config_file = join(current_path, 'configs', 'pretraining.yaml')
try:
# Attempt to read the environment variable
pretrain_config_file = os.environ['PRETRAIN_CONFIG_FILE']
except KeyError:
# Handle the case when the environment variable is not found
print(f"PRETRAIN_CONFIG_FILE environment variable has not been set. Using default value: {pretrain_config_file}")
return pretrain_config_file
def get_set_parameters(self, parameter_class: str, parameters: dict = {}) -> dict:
"""
Retrieve and validate the provided parameters for a given parameter class.
:param parameter_class: The class/category of the parameter (e.g., 'data_collator').
:type parameter_class: str
:param parameters: A dictionary of parameters to be validated.
:type parameters: dict
:return: A dictionary of validated parameters.
:rtype: dict
:raises ValueError: If an invalid parameter is provided.
"""
class_params = {k: self.get_parameter(parameter_class, k) for k in self.parameters[parameter_class]}
# First validatiading the class parameters as well
for param, param_value in class_params.items():
self.validate(parameter_class, param, param_value)
for param, param_value in parameters.items():
if param not in class_params:
raise ValueError(f"The provided {param} is an INVALID {parameter_class} parameter! The valid parameters are: {list(class_params.keys())}")
self.validate(parameter_class, param, param_value)
class_params[param] = param_value
return class_params
def get_and_set_model_parameters(self, parameters: dict = {}) -> dict:
""" Setting the model parameters """
self.model_params = self.get_set_parameters('model', parameters)
return self.model_params
def get_and_set_dataset_parameters(self, parameters: dict = {}) -> dict:
""" Setting the dataset parameters """
self.dataset_params = self.get_set_parameters('dataset', parameters)
return self.dataset_params
def get_and_set_pretraining_parameters(self, parameters: dict = {}) -> dict:
""" Setting the model parameters """
self.pretraining_params = self.get_set_parameters('pretraining', parameters)
return self.pretraining_params
def get_and_set_datacollator_parameters(self, parameters: dict = {}) -> dict:
""" Setting the model parameters """
self.data_collator_params = self.get_set_parameters('data_collator', parameters)
return self.data_collator_params
def get_and_set_segmentation_parameters(self, parameters: dict = {}) -> dict:
self.segmentation_params = self.def_seq_config.get_and_set_segmentation_parameters(parameters)
return self.segmentation_params
def get_and_set_tokenization_parameters(self, parameters: dict = {}) -> dict:
self.tokenization_params = self.def_seq_config.get_and_set_tokenization_parameters(parameters)
return self.tokenization_params
def get_and_set_computation_params(self, parameters: dict = {}) -> dict:
self.computation_params = self.def_seq_config.get_and_set_computational_parameters(parameters)
return self.computation_params
|