Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- deepseek
|
5 |
+
- fp8
|
6 |
+
- vllm
|
7 |
+
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
|
8 |
+
library_name: transformers
|
9 |
+
---
|
10 |
+
|
11 |
+
# DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic
|
12 |
+
|
13 |
+
## Model Overview
|
14 |
+
- **Model Architecture:** DeepSeek-R1-Distill-Qwen-32B
|
15 |
+
- **Input:** Text
|
16 |
+
- **Output:** Text
|
17 |
+
- **Model Optimizations:**
|
18 |
+
- **Weight quantization:** FP8
|
19 |
+
- **Activation quantization:** FP8
|
20 |
+
- **Release Date:** 2/6/2025
|
21 |
+
- **Version:** 1.0
|
22 |
+
- **Model Developers:** Neural Magic
|
23 |
+
|
24 |
+
Quantized version of [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B).
|
25 |
+
|
26 |
+
### Model Optimizations
|
27 |
+
|
28 |
+
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM.
|
29 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
|
30 |
+
|
31 |
+
## Deployment
|
32 |
+
|
33 |
+
### Use with vLLM
|
34 |
+
|
35 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import AutoTokenizer
|
39 |
+
from vllm import LLM, SamplingParams
|
40 |
+
|
41 |
+
max_model_len, tp_size = 4096, 1
|
42 |
+
model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
45 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
46 |
+
|
47 |
+
messages_list = [
|
48 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
49 |
+
]
|
50 |
+
|
51 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
52 |
+
|
53 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
54 |
+
|
55 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
56 |
+
print(generated_text)
|
57 |
+
```
|
58 |
+
|
59 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
60 |
+
|
61 |
+
## Creation
|
62 |
+
|
63 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
64 |
+
|
65 |
+
|
66 |
+
```python
|
67 |
+
import argparse
|
68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
70 |
+
from llmcompressor.transformers import oneshot
|
71 |
+
import os
|
72 |
+
|
73 |
+
def main():
|
74 |
+
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
|
75 |
+
parser.add_argument('--model_id', type=str, required=True,
|
76 |
+
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
|
77 |
+
parser.add_argument('--save_path', type=str, default='.',
|
78 |
+
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
|
79 |
+
args = parser.parse_args()
|
80 |
+
|
81 |
+
# Load model
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
|
84 |
+
)
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
86 |
+
|
87 |
+
# Configure the quantization algorithm and scheme
|
88 |
+
recipe = QuantizationModifier(
|
89 |
+
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
|
90 |
+
)
|
91 |
+
|
92 |
+
# Apply quantization
|
93 |
+
oneshot(model=model, recipe=recipe)
|
94 |
+
|
95 |
+
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
|
96 |
+
os.makedirs(save_path, exist_ok=True)
|
97 |
+
|
98 |
+
# Save to disk in compressed-tensors format
|
99 |
+
model.save_pretrained(save_path)
|
100 |
+
tokenizer.save_pretrained(save_path)
|
101 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|
105 |
+
```
|
106 |
+
|
107 |
+
## Evaluation
|
108 |
+
|
109 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
|
110 |
+
|
111 |
+
OpenLLM Leaderboard V1:
|
112 |
+
```
|
113 |
+
lm_eval \
|
114 |
+
--model vllm \
|
115 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
116 |
+
--tasks openllm \
|
117 |
+
--write_out \
|
118 |
+
--batch_size auto \
|
119 |
+
--output_path output_dir \
|
120 |
+
--show_config
|
121 |
+
```
|
122 |
+
|
123 |
+
OpenLLM Leaderboard V2:
|
124 |
+
```
|
125 |
+
lm_eval \
|
126 |
+
--model vllm \
|
127 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
|
128 |
+
--apply_chat_template \
|
129 |
+
--fewshot_as_multiturn \
|
130 |
+
--tasks leaderboard \
|
131 |
+
--write_out \
|
132 |
+
--batch_size auto \
|
133 |
+
--output_path output_dir \
|
134 |
+
--show_config
|
135 |
+
|
136 |
+
```
|
137 |
+
|
138 |
+
### Accuracy
|
139 |
+
|
140 |
+
#### OpenLLM Leaderboard V1 evaluation scores
|
141 |
+
|
142 |
+
| Metric | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic |
|
143 |
+
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
144 |
+
| ARC-Challenge (Acc-Norm, 25-shot) | 64.59 | 64.42 |
|
145 |
+
| GSM8K (Strict-Match, 5-shot) | 82.71 | 82.64 |
|
146 |
+
| HellaSwag (Acc-Norm, 10-shot) | 83.80 | 83.77 |
|
147 |
+
| MMLU (Acc, 5-shot) | 81.12 | 80.98 |
|
148 |
+
| TruthfulQA (MC2, 0-shot) | 58.41 | 58.30 |
|
149 |
+
| Winogrande (Acc, 5-shot) | 76.40 | 76.09 |
|
150 |
+
| **Average Score** | **74.51** | **74.36** |
|
151 |
+
| **Recovery (%)** | **100.00** | **99.79** |
|
152 |
+
|
153 |
+
#### OpenLLM Leaderboard V2 evaluation scores
|
154 |
+
|
155 |
+
| Metric | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic |
|
156 |
+
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
157 |
+
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 42.87 | 42.26 |
|
158 |
+
| BBH (Acc-Norm, 3-shot) | 57.96 | 58.38 |
|
159 |
+
| GPQA (Acc-Norm, 0-shot) | 26.95 | 26.86 |
|
160 |
+
| MUSR (Acc-Norm, 0-shot) | 43.95 | 44.22 |
|
161 |
+
| MMLU-Pro (Acc, 5-shot) | 49.82 | 49.43 |
|
162 |
+
| **Average Score** | **44.31** | **44.23** |
|
163 |
+
| **Recovery (%)** | **100.00** | **99.82** |
|
164 |
+
|
165 |
+
#### Coding evaluation scores
|
166 |
+
|
167 |
+
| Metric | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | neuralmagic/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic |
|
168 |
+
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
|
169 |
+
| HumanEval pass@1 | 86.00 | 85.20 |
|
170 |
+
| HumanEval pass@10 | 92.50 | 92.20 |
|
171 |
+
| HumanEval+ pass@1 | 82.00 | 80.90 |
|
172 |
+
| HumanEval+ pass@10 | 88.70 | 88.70 |
|
173 |
+
| **Average Score** | **87.30** | **86.75** |
|
174 |
+
| **Recovery (%)** | **100.00** | **99.37** |
|