mgoin commited on
Commit
f14841a
·
verified ·
1 Parent(s): 96e560b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: neuralmagic/Llama-2-7b-pruned70-retrained
3
+ inference: true
4
+ model_type: llama
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - cerebras/SlimPajama-627B
8
+ - theblackcat102/evol-codealpaca-v1
9
+ tags:
10
+ - sparse
11
+ - code
12
+ ---
13
+
14
+ # Llama-2-7b-pruned70-retrained-evolcodealpaca
15
+
16
+ This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for code generation tasks using the [Evolved CodeAlpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.
17
+
18
+ **Authors**: Neural Magic, Cerebras
19
+
20
+ ## Usage
21
+
22
+ Below we share some code snippets on how to get quickly started with running the model.
23
+
24
+ ### Sparse Transfer
25
+
26
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
27
+
28
+ ### Running the model
29
+
30
+ This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
31
+
32
+ ```python
33
+ # pip install transformers accelerate
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM
35
+
36
+ tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca")
37
+ model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca", device_map="auto")
38
+
39
+ input_text = "def fibonacci(n):\n"
40
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
41
+
42
+ outputs = model.generate(**input_ids)
43
+ print(tokenizer.decode(outputs[0]))
44
+ ```
45
+
46
+ ## Evaluation Benchmark Results
47
+
48
+ Model evaluation metrics and results.
49
+
50
+ | Benchmark | Metric | Llama-2-7b-evolcodealpaca | Llama-2-7b-pruned70-retrained-evolcodealpaca |
51
+ |------------------------------------------------|---------------|-------------|-------------------------------|
52
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
53
+
54
+ ## Model Training Details
55
+
56
+ Coming soon.
57
+
58
+ ## Help
59
+
60
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)