--- base_model: NousResearch/Llama-2-7b-chat-hf inference: false model_type: llama prompt_template: | [INST] {prompt} [/INST] quantized_by: mwitiderrick tags: - deepsparse --- # Llama-2-7b-chat-hf - DeepSparse This repo contains model files for [Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"[INST]{prompt}[/INST]" model = TextGeneration(model_path="hf:nm-testing/Llama2-7b-chat-pruned50-qunat-ds") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ Banana bread is a delicious and easy-to-make treat that can be enjoyed year-round. Here is a basic recipe for banana bread that you can try at home: Ingredients: * 3 ripe bananas, peeled and sliced * 1/2 cup (120 ml) vegetable oil * 2 tbsp (30 ml) sugar * 2 tbsp (30 ml) water * 2 tbsp (30 ml) all-purpose flour * 1 tsp (2.5 ml) baking powder * 1 tsp (2.5 ml) salt * 1 tbsp (30 ml) vanilla extract Instructions: 1. Preheat the oven to 3500°F ( """ ``` ## Prompt template ``` [INST] [/INST] ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py NousResearch/Llama-2-7b-chat-hf open_platypus --precision float16 --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)