Lin-K76 commited on
Commit
492ab8b
·
verified ·
1 Parent(s): f57c032

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -25
README.md CHANGED
@@ -20,12 +20,12 @@ language:
20
  - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
21
  - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
22
  - **Release Date:** 7/24/2024
23
- - **Version:** 1.0
24
  - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
28
- It achieves an average score of 86.41 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.63.
29
 
30
  ### Model Optimizations
31
 
@@ -164,7 +164,7 @@ oneshot(
164
 
165
  The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
166
  Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
167
- This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
168
 
169
  ### Accuracy
170
 
@@ -183,41 +183,41 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
183
  <tr>
184
  <td>MMLU (5-shot)
185
  </td>
186
- <td>86.25
187
  </td>
188
- <td>86.06
189
  </td>
190
- <td>99.78%
191
  </td>
192
  </tr>
193
  <tr>
194
  <td>ARC Challenge (0-shot)
195
  </td>
196
- <td>96.93
197
  </td>
198
- <td>96.33
199
  </td>
200
- <td>99.38%
201
  </td>
202
  </tr>
203
  <tr>
204
  <td>GSM-8K-cot (8-shot, strict-match)
205
  </td>
206
- <td>96.44
207
  </td>
208
- <td>95.91
209
  </td>
210
- <td>99.45%
211
  </td>
212
  </tr>
213
  <tr>
214
  <td>Hellaswag (10-shot)
215
  </td>
216
- <td>88.33
217
  </td>
218
- <td>88.25
219
  </td>
220
- <td>99.91%
221
  </td>
222
  </tr>
223
  <tr>
@@ -225,29 +225,29 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
225
  </td>
226
  <td>87.21
227
  </td>
228
- <td>86.98
229
  </td>
230
- <td>99.74%
231
  </td>
232
  </tr>
233
  <tr>
234
  <td>TruthfulQA (0-shot, mc2)
235
  </td>
236
- <td>64.64
237
  </td>
238
- <td>64.90
239
  </td>
240
- <td>100.4%
241
  </td>
242
  </tr>
243
  <tr>
244
  <td><strong>Average</strong>
245
  </td>
246
- <td><strong>86.63</strong>
247
  </td>
248
- <td><strong>86.41</strong>
249
  </td>
250
- <td><strong>99.74%</strong>
251
  </td>
252
  </tr>
253
  </table>
@@ -261,8 +261,10 @@ The results were obtained using the following commands:
261
  ```
262
  lm_eval \
263
  --model vllm \
264
- --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
265
- --tasks mmlu \
 
 
266
  --num_fewshot 5 \
267
  --batch_size auto
268
  ```
 
20
  - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
21
  - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
22
  - **Release Date:** 7/24/2024
23
+ - **Version:** 1.1
24
  - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
28
+ It achieves an average score of 86.39 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.57.
29
 
30
  ### Model Optimizations
31
 
 
164
 
165
  The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
166
  Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
167
+ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
168
 
169
  ### Accuracy
170
 
 
183
  <tr>
184
  <td>MMLU (5-shot)
185
  </td>
186
+ <td>87.41
187
  </td>
188
+ <td>87.05
189
  </td>
190
+ <td>99.59%
191
  </td>
192
  </tr>
193
  <tr>
194
  <td>ARC Challenge (0-shot)
195
  </td>
196
+ <td>94.97
197
  </td>
198
+ <td>94.97
199
  </td>
200
+ <td>100.0%
201
  </td>
202
  </tr>
203
  <tr>
204
  <td>GSM-8K-cot (8-shot, strict-match)
205
  </td>
206
+ <td>95.98
207
  </td>
208
+ <td>95.83
209
  </td>
210
+ <td>99.84%
211
  </td>
212
  </tr>
213
  <tr>
214
  <td>Hellaswag (10-shot)
215
  </td>
216
+ <td>88.54
217
  </td>
218
+ <td>88.11
219
  </td>
220
+ <td>99.51%
221
  </td>
222
  </tr>
223
  <tr>
 
225
  </td>
226
  <td>87.21
227
  </td>
228
+ <td>87.77
229
  </td>
230
+ <td>100.6%
231
  </td>
232
  </tr>
233
  <tr>
234
  <td>TruthfulQA (0-shot, mc2)
235
  </td>
236
+ <td>65.31
237
  </td>
238
+ <td>64.58
239
  </td>
240
+ <td>98.88%
241
  </td>
242
  </tr>
243
  <tr>
244
  <td><strong>Average</strong>
245
  </td>
246
+ <td><strong>86.57</strong>
247
  </td>
248
+ <td><strong>86.39</strong>
249
  </td>
250
+ <td><strong>99.75%</strong>
251
  </td>
252
  </tr>
253
  </table>
 
261
  ```
262
  lm_eval \
263
  --model vllm \
264
+ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
265
+ --tasks mmlu_llama_3.1_instruct \
266
+ --apply_chat_template \
267
+ --fewshot_as_multiturn \
268
  --num_fewshot 5 \
269
  --batch_size auto
270
  ```