alexmarques
commited on
Commit
•
6b753ea
1
Parent(s):
7d1f72d
Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
35 |
-
It achieves
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -130,8 +130,9 @@ model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
|
|
130 |
|
131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
133 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-
|
134 |
|
|
|
135 |
|
136 |
### Accuracy
|
137 |
|
@@ -144,27 +145,27 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
144 |
</td>
|
145 |
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
146 |
</td>
|
147 |
-
<td><strong>Recovery
|
148 |
</td>
|
149 |
</tr>
|
150 |
<tr>
|
151 |
<td>MMLU (5-shot)
|
152 |
</td>
|
153 |
-
<td>
|
154 |
</td>
|
155 |
-
<td>
|
156 |
</td>
|
157 |
-
<td>99.
|
158 |
</td>
|
159 |
</tr>
|
160 |
<tr>
|
161 |
<td>ARC Challenge (0-shot)
|
162 |
</td>
|
163 |
-
<td>
|
164 |
</td>
|
165 |
-
<td>95.
|
166 |
</td>
|
167 |
-
<td>
|
168 |
</td>
|
169 |
</tr>
|
170 |
<tr>
|
@@ -172,9 +173,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
172 |
</td>
|
173 |
<td>96.44
|
174 |
</td>
|
175 |
-
<td>96.
|
176 |
</td>
|
177 |
-
<td>99.
|
178 |
</td>
|
179 |
</tr>
|
180 |
<tr>
|
@@ -184,7 +185,7 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
184 |
</td>
|
185 |
<td>88.27
|
186 |
</td>
|
187 |
-
<td>99.
|
188 |
</td>
|
189 |
</tr>
|
190 |
<tr>
|
@@ -192,9 +193,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
192 |
</td>
|
193 |
<td>87.21
|
194 |
</td>
|
195 |
-
|
196 |
</td>
|
197 |
-
<td>100.
|
198 |
</td>
|
199 |
</tr>
|
200 |
<tr>
|
@@ -202,19 +203,19 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
202 |
</td>
|
203 |
<td>64.64
|
204 |
</td>
|
205 |
-
<td>65.
|
206 |
</td>
|
207 |
-
<td>
|
208 |
</td>
|
209 |
</tr>
|
210 |
<tr>
|
211 |
<td><strong>Average</strong>
|
212 |
</td>
|
213 |
-
<td><strong>86.
|
214 |
</td>
|
215 |
-
<td><strong>86.
|
216 |
</td>
|
217 |
-
<td><strong>
|
218 |
</td>
|
219 |
</tr>
|
220 |
</table>
|
@@ -227,7 +228,7 @@ The results were obtained using the following commands:
|
|
227 |
```
|
228 |
lm_eval \
|
229 |
--model vllm \
|
230 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
231 |
--tasks mmlu_llama_3.1_instruct \
|
232 |
--apply_chat_template \
|
233 |
--fewshot_as_multiturn \
|
@@ -239,7 +240,7 @@ lm_eval \
|
|
239 |
```
|
240 |
lm_eval \
|
241 |
--model vllm \
|
242 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
243 |
--tasks arc_challenge_llama_3.1_instruct \
|
244 |
--apply_chat_template \
|
245 |
--num_fewshot 0 \
|
@@ -250,7 +251,7 @@ lm_eval \
|
|
250 |
```
|
251 |
lm_eval \
|
252 |
--model vllm \
|
253 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,
|
254 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
255 |
--apply_chat_template \
|
256 |
--fewshot_as_multiturn \
|
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
35 |
+
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande, and TruthfulQA.
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
|
|
130 |
|
131 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
132 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
133 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, and MMLU that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals).
|
134 |
|
135 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
136 |
|
137 |
### Accuracy
|
138 |
|
|
|
145 |
</td>
|
146 |
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
|
147 |
</td>
|
148 |
+
<td><strong>Recovery</strong>
|
149 |
</td>
|
150 |
</tr>
|
151 |
<tr>
|
152 |
<td>MMLU (5-shot)
|
153 |
</td>
|
154 |
+
<td>87.38
|
155 |
</td>
|
156 |
+
<td>87.22
|
157 |
</td>
|
158 |
+
<td>99.8%
|
159 |
</td>
|
160 |
</tr>
|
161 |
<tr>
|
162 |
<td>ARC Challenge (0-shot)
|
163 |
</td>
|
164 |
+
<td>94.97
|
165 |
</td>
|
166 |
+
<td>95.31
|
167 |
</td>
|
168 |
+
<td>100.4%
|
169 |
</td>
|
170 |
</tr>
|
171 |
<tr>
|
|
|
173 |
</td>
|
174 |
<td>96.44
|
175 |
</td>
|
176 |
+
<td>96.29
|
177 |
</td>
|
178 |
+
<td>99.8%
|
179 |
</td>
|
180 |
</tr>
|
181 |
<tr>
|
|
|
185 |
</td>
|
186 |
<td>88.27
|
187 |
</td>
|
188 |
+
<td>99.9%
|
189 |
</td>
|
190 |
</tr>
|
191 |
<tr>
|
|
|
193 |
</td>
|
194 |
<td>87.21
|
195 |
</td>
|
196 |
+
<td>87.37
|
197 |
</td>
|
198 |
+
<td>100.2%
|
199 |
</td>
|
200 |
</tr>
|
201 |
<tr>
|
|
|
203 |
</td>
|
204 |
<td>64.64
|
205 |
</td>
|
206 |
+
<td>65.26
|
207 |
</td>
|
208 |
+
<td>101.0%
|
209 |
</td>
|
210 |
</tr>
|
211 |
<tr>
|
212 |
<td><strong>Average</strong>
|
213 |
</td>
|
214 |
+
<td><strong>86.75</strong>
|
215 |
</td>
|
216 |
+
<td><strong>86.76</strong>
|
217 |
</td>
|
218 |
+
<td><strong>100.0%</strong>
|
219 |
</td>
|
220 |
</tr>
|
221 |
</table>
|
|
|
228 |
```
|
229 |
lm_eval \
|
230 |
--model vllm \
|
231 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
|
232 |
--tasks mmlu_llama_3.1_instruct \
|
233 |
--apply_chat_template \
|
234 |
--fewshot_as_multiturn \
|
|
|
240 |
```
|
241 |
lm_eval \
|
242 |
--model vllm \
|
243 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
|
244 |
--tasks arc_challenge_llama_3.1_instruct \
|
245 |
--apply_chat_template \
|
246 |
--num_fewshot 0 \
|
|
|
251 |
```
|
252 |
lm_eval \
|
253 |
--model vllm \
|
254 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
|
255 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
256 |
--apply_chat_template \
|
257 |
--fewshot_as_multiturn \
|