abhinavnmagic commited on
Commit
14bf365
1 Parent(s): 822ee82

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +237 -0
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ pipeline_tag: text-generation
12
+ license: llama3.1
13
+ ---
14
+
15
+ # Meta-Llama-3.1-8B-Instruct-quantized.w4a16
16
+
17
+ ## Model Overview
18
+ - **Model Architecture:** Meta-Llama-3
19
+ - **Input:** Text
20
+ - **Output:** Text
21
+ - **Model Optimizations:**
22
+ - **Weight quantization:** INT4
23
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
24
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
25
+ - **Release Date:** 7/26/2024
26
+ - **Version:** 1.0
27
+ - **License(s):** [Llama3](https://llama.meta.com/llama3/license/)
28
+ - **Model Developers:** Neural Magic
29
+
30
+ Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
31
+ It achieves an average score of 67.57 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.32.
32
+
33
+ ### Model Optimizations
34
+
35
+ This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT4 data type.
36
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
37
+
38
+ Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT4 and floating point representations of the quantized weights.
39
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 512 sequences of 8,192 random tokens.
40
+
41
+
42
+ ## Deployment
43
+
44
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
45
+
46
+ ```python
47
+ from vllm import LLM, SamplingParams
48
+ from transformers import AutoTokenizer
49
+
50
+ model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
51
+ number_gpus = 1
52
+ max_model_len = 8192
53
+
54
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
55
+
56
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
57
+
58
+ messages = [
59
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
60
+ {"role": "user", "content": "Who are you?"},
61
+ ]
62
+
63
+ prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
64
+
65
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
66
+
67
+ outputs = llm.generate(prompts, sampling_params)
68
+
69
+ generated_text = outputs[0].outputs[0].text
70
+ print(generated_text)
71
+ ```
72
+
73
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
74
+
75
+
76
+ ## Creation
77
+
78
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
79
+
80
+ ```python
81
+ from transformers import AutoTokenizer
82
+ from datasets import Dataset
83
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
84
+ from llmcompressor.modifiers.quantization import GPTQModifier
85
+ import random
86
+
87
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
88
+
89
+ num_samples = 512
90
+ max_seq_len = 8192
91
+
92
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
93
+
94
+ preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
95
+
96
+ dataset_name = "neuralmagic/LLM_compression_calibration"
97
+ dataset = load_dataset(dataset_name, split="train")
98
+ ds = dataset.shuffle().select(range(num_samples))
99
+ ds = ds.map(preprocess_fn)
100
+
101
+ recipe = GPTQModifier(
102
+ targets="Linear",
103
+ scheme="W4A16",
104
+ ignore=["lm_head"],
105
+ dampening_frac=0.01,
106
+ )
107
+
108
+ model = SparseAutoModelForCausalLM.from_pretrained(
109
+ model_id,
110
+ device_map="auto",
111
+ trust_remote_code=True,
112
+ )
113
+
114
+ oneshot(
115
+ model=model,
116
+ dataset=ds,
117
+ recipe=recipe,
118
+ max_seq_length=max_seq_len,
119
+ num_calibration_samples=num_samples,
120
+ )
121
+ model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16")
122
+ ```
123
+
124
+
125
+
126
+ ## Evaluation
127
+
128
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
129
+ ```
130
+ lm_eval \
131
+ --model vllm \
132
+ --model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
133
+ --tasks openllm \
134
+ --batch_size auto
135
+ ```
136
+
137
+ ### Accuracy
138
+
139
+ #### Open LLM Leaderboard evaluation scores
140
+ <table>
141
+ <tr>
142
+ <td><strong>Benchmark</strong>
143
+ </td>
144
+ <td><strong>Meta-Llama-3.1-8B-Instruct </strong>
145
+ </td>
146
+ <td><strong>hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4</strong>
147
+ </td>
148
+ <td><strong>Meta-Llama-3.1-8B-Instruct-quantized.w4a16 (this model)</strong>
149
+ </td>
150
+ <td><strong>Recovery (this model) </strong>
151
+ </td>
152
+ </tr>
153
+ <tr>
154
+ <td>MMLU (5-shot)
155
+ </td>
156
+ <td>67.94
157
+ </td>
158
+ <td>66.33
159
+ </td>
160
+ <td>65.38
161
+ </td>
162
+ <td>96.23%
163
+ </td>
164
+ </tr>
165
+ <tr>
166
+ <td>ARC Challenge (25-shot)
167
+ </td>
168
+ <td>60.41
169
+ </td>
170
+ <td>58.36
171
+ </td>
172
+ <td>59.30
173
+ </td>
174
+ <td>98.16%
175
+ </td>
176
+ </tr>
177
+ <tr>
178
+ <td>GSM-8K (5-shot, strict-match)
179
+ </td>
180
+ <td>75.66
181
+ </td>
182
+ <td>74.07
183
+ </td>
184
+ <td>75.43
185
+ </td>
186
+ <td>99.69%
187
+ </td>
188
+ </tr>
189
+ <tr>
190
+ <td>Hellaswag (10-shot)
191
+ </td>
192
+ <td>80.01
193
+ </td>
194
+ <td>79.18
195
+ </td>
196
+ <td>79.05
197
+ </td>
198
+ <td>98.80%
199
+ </td>
200
+ </tr>
201
+ <tr>
202
+ <td>Winogrande (5-shot)
203
+ </td>
204
+ <td>77.90
205
+ </td>
206
+ <td>76.00
207
+ </td>
208
+ <td>76.08
209
+ </td>
210
+ <td>97.66%
211
+ </td>
212
+ </tr>
213
+ <tr>
214
+ <td>TruthfulQA (0-shot)
215
+ </td>
216
+ <td>54.04
217
+ </td>
218
+ <td>51.91
219
+ </td>
220
+ <td>50.19
221
+ </td>
222
+ <td>92.8%
223
+ </td>
224
+ </tr>
225
+ <tr>
226
+ <td><strong>Average</strong>
227
+ </td>
228
+ <td><strong>69.33</strong>
229
+ </td>
230
+ <td><strong>67.64</strong>
231
+ </td>
232
+ <td><strong>67.57</strong>
233
+ </td>
234
+ <td><strong>97.47%</strong>
235
+ </td>
236
+ </tr>
237
+ </table>