--- tags: - int4 - vllm language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct --- # Meta-Llama-3.1-8B-Instruct-quantized.w4a16 ## Model Overview - **Model Architecture:** Meta-Llama-3 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 7/26/2024 - **Version:** 1.0 - **License(s):** Llama3.1 - **Model Developers:** Neural Magic This model is a quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation. Meta-Llama-3.1-8B-Instruct-quantized.w4a16 achieves 93.0% recovery for the Arena-Hard evaluation, 98.9% for OpenLLM v1 (using Meta's prompting when available), 96.1% for OpenLLM v2, 99.7% for HumanEval pass@1, and 97.4% for HumanEval+ pass@1. ### Model Optimizations This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor and 768 sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration). ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16" number_gpus = 1 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below. Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ. ```python from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from datasets import load_dataset model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" num_samples = 756 max_seq_len = 4064 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) examples = [tokenizer(example["text"], padding=False, max_length=max_seq_len, truncation=True) for example in ds] quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=True, model_file_base_name="model", damp_percent=0.1, ) model = AutoGPTQForCausalLM.from_pretrained( model_id, quantize_config, device_map="auto", ) model.quantize(examples) model.save_pretrained("Meta-Llama-3.1-8B-Instruct-quantized.w4a16") ``` ## Evaluation This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine. Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository. The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4. We report below the scores obtained in each judgement and the average. OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct). This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals) and a few fixes to OpenLLM v2 tasks. HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository. Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals). **Note:** Results have been updated after Meta modified the chat template. ### Accuracy
Category | Benchmark | Meta-Llama-3.1-8B-Instruct | Meta-Llama-3.1-8B-Instruct-quantized.w8a8 (this model) | Recovery |
LLM as a judge | Arena Hard | 25.8 (25.1 / 26.5) | 27.2 (27.6 / 26.7) | 105.4% |
OpenLLM v1 | MMLU (5-shot) | 68.3 | 66.9 | 97.9% |
MMLU (CoT, 0-shot) | 72.8 | 71.1 | 97.6% | |
ARC Challenge (0-shot) | 81.4 | 80.2 | 98.0% | |
GSM-8K (CoT, 8-shot, strict-match) | 82.8 | 82.9 | 100.2% | |
Hellaswag (10-shot) | 80.5 | 79.9 | 99.3% | |
Winogrande (5-shot) | 78.1 | 78.0 | 99.9% | |
TruthfulQA (0-shot, mc2) | 54.5 | 52.8 | 96.9% | |
Average | 74.3 | 73.5 | 98.9% | |
OpenLLM v2 | MMLU-Pro (5-shot) | 30.8 | 28.8 | 93.6% |
IFEval (0-shot) | 77.9 | 76.3 | 98.0% | |
BBH (3-shot) | 30.1 | 28.9 | 96.1% | |
Math-lvl-5 (4-shot) | 15.7 | 14.8 | 94.4% | |
GPQA (0-shot) | 3.7 | 4.0 | 109.8% | |
MuSR (0-shot) | 7.6 | 6.3 | 83.2% | |
Average | 27.6 | 26.5 | 96.1% | |
Coding | HumanEval pass@1 | 67.3 | 67.1 | 99.7% |
HumanEval+ pass@1 | 60.7 | 59.1 | 97.4% | |
Multilingual | Portuguese MMLU (5-shot) | 59.96 | 58.69 | 97.9% |
Spanish MMLU (5-shot) | 60.25 | 58.39 | 96.9% | |
Italian MMLU (5-shot) | 59.23 | 57.82 | 97.6% | |
German MMLU (5-shot) | 58.63 | 56.22 | 95.9% | |
French MMLU (5-shot) | 59.65 | 57.58 | 96.5% | |
Hindi MMLU (5-shot) | 50.10 | 47.14 | 94.1% | |
Thai MMLU (5-shot) | 49.12 | 46.72 | 95.1% |