alexmarques commited on
Commit
a9d9e16
1 Parent(s): 1093d08

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - vllm
4
+ - sparsity
5
+ - quantized
6
+ pipeline_tag: text-generation
7
+ license: llama3.1
8
+ base_model: neuralmagic/Sparse-Llama-3.1-8B-gsm8k-2of4
9
+ datasets:
10
+ - openai/gsm8k
11
+ language:
12
+ - en
13
+ metrics:
14
+ - accuracy
15
+ ---
16
+
17
+ # Sparse-Llama-3.1-8B-gsm8k-2of4-quantized.w4a16
18
+
19
+ ## Model Overview
20
+ - **Model Architecture:** Llama-3.1-8B
21
+ - **Input:** Text
22
+ - **Output:** Text
23
+ - **Model Optimizations:**
24
+ - **Sparsity:** 2:4
25
+ - **Release Date:** 11/21/2024
26
+ - **Version:** 1.0
27
+ - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
28
+ - **Model Developers:** Neural Magic
29
+
30
+ This is AI model especialized in grade-school math obtained by fine-tuning the 2:4 sparse [Sparse-Llama-3.1-8B-2of4](https://huggingface.co/neuralmagic/Sparse-Llama-3.1-8B-2of4) on the [GSM8k](https://huggingface.co/datasets/openai/gsm8k) dataset, followed by one-shot quantization.
31
+ It achieves 64.3% 0-shot accuracy on the test set of GSM8k, compared to 66.3% for the fine-tuned dense model [Llama-3.1-8B-gsm8k](https://huggingface.co/neuralmagic/Llama-3.1-8B-gsm8k) — demonstrating over **96.9% accuracy recovery**.
32
+ In constrast, the pretrained [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) achieves 50.7% 5-shot accuracy and the sparse foundational [Sparse-Llama-3.1-8B-2of4](https://huggingface.co/neuralmagic/Sparse-Llama-3.1-8B-2of4) model achieves 56.3% 5-shot accuracy.
33
+
34
+
35
+ ### Model Optimizations
36
+
37
+ This model was obtained by quantizing the weights of [Sparse-Llama-3.1-8B-gsm8k-2of4](https://huggingface.co/neuralmagic/Sparse-Llama-3.1-8B-gsm8k-2of4) to INT4 data type.
38
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
39
+ That is on top of the reduction of 50% of weights via 2:4 pruning employed on [Sparse-Llama-3.1-8B-gsm8k-2of4](https://huggingface.co/neuralmagic/Sparse-Llama-3.1-8B-gsm8k-2of4).
40
+
41
+ Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT4 and floating point representations of the quantized weights.
42
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
43
+
44
+ ## Deployment with vLLM
45
+
46
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend. vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
47
+
48
+
49
+ ## Evaluation
50
+
51
+ This model was evaluated on the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
52
+
53
+ ### Accuracy
54
+ #### GSM8k Benchmark
55
+ <table>
56
+ <tr>
57
+ <td><strong>Metric</strong></td>
58
+ <td style="text-align: center"><strong>Llama-3.1-8B<br>(5-shot)</strong></td>
59
+ <td style="text-align: center"><strong>Sparse-Llama-3.1-8B-2of4<br>(5-shot)</strong></td>
60
+ <td style="text-align: center"><strong>Llama-3.1-8B-gsm8k<br>(0-shot)</strong></td>
61
+ <td style="text-align: center"><strong>Sparse-Llama-3.1-8B-gsm8k-2of4<br>(0-shot)</strong></td>
62
+ <td style="text-align: center"><strong>Sparse-Llama-3.1-8B-gsm8k-2of4-quantized.w4a16<br>(0-shot)</strong></td>
63
+ </tr>
64
+ <tr>
65
+ <td>Accuracy</td>
66
+ <td style="text-align: center">50.7%</td>
67
+ <td style="text-align: center">56.3%</td>
68
+ <td style="text-align: center">66.3%</td>
69
+ <td style="text-align: center">66.9%</td>
70
+ <td style="text-align: center">64.3%</td>
71
+ </tr>
72
+ </table>