--- license: mit language: - en tags: - sparse - sparsity - quantized - onnx - embeddings - int8 - mteb - deepsparse model-index: - name: bge-large-en-v1.5-quant results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.53731343283583 - type: ap value: 38.30609312253564 - type: f1 value: 69.42802757893695 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.27346145216443 - type: cos_sim_spearman value: 88.36526647458979 - type: euclidean_pearson value: 86.83053354694746 - type: euclidean_spearman value: 87.56223612880584 - type: manhattan_pearson value: 86.59250609226758 - type: manhattan_spearman value: 87.70681773644885 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.18998669716373 - type: cos_sim_spearman value: 82.06129973984048 - type: euclidean_pearson value: 83.65969509485801 - type: euclidean_spearman value: 81.91666612708826 - type: manhattan_pearson value: 83.6906794731384 - type: manhattan_spearman value: 81.91752705367436 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.93407086985752 - type: cos_sim_spearman value: 78.82992283957066 - type: euclidean_pearson value: 83.39733473832982 - type: euclidean_spearman value: 78.86999229850214 - type: manhattan_pearson value: 83.39397058098533 - type: manhattan_spearman value: 78.85397971200753 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 87.2586009863056 - type: cos_sim_spearman value: 87.99415514558852 - type: euclidean_pearson value: 86.98993652364359 - type: euclidean_spearman value: 87.72725335668807 - type: manhattan_pearson value: 86.897205761048 - type: manhattan_spearman value: 87.65231103509018 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 85.41417660460755 - type: cos_sim_spearman value: 83.50291886604928 - type: euclidean_pearson value: 84.67758839660924 - type: euclidean_spearman value: 83.4368059512681 - type: manhattan_pearson value: 84.66027228213025 - type: manhattan_spearman value: 83.43472054456252 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.02513262365703 - type: cos_sim_spearman value: 89.00430907638267 - type: euclidean_pearson value: 88.16290361497319 - type: euclidean_spearman value: 88.6645154822661 - type: manhattan_pearson value: 88.15337528825458 - type: manhattan_spearman value: 88.66202950081507 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.10194022827035 - type: cos_sim_spearman value: 86.45367112223394 - type: euclidean_pearson value: 85.45292931769094 - type: euclidean_spearman value: 86.06607589083283 - type: manhattan_pearson value: 85.4111233047049 - type: manhattan_spearman value: 86.04379654118996 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.86966589113663 - type: cos_sim_spearman value: 89.5617056243649 - type: euclidean_pearson value: 89.018495917952 - type: euclidean_spearman value: 88.387335721179 - type: manhattan_pearson value: 89.07568042943448 - type: manhattan_spearman value: 88.51733863475219 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.38465344518238 - type: cos_sim_spearman value: 68.15219488291783 - type: euclidean_pearson value: 68.99169681132668 - type: euclidean_spearman value: 68.01334641045888 - type: manhattan_pearson value: 68.84952679202642 - type: manhattan_spearman value: 67.85430179655137 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.60574360222778 - type: cos_sim_spearman value: 87.8878986593873 - type: euclidean_pearson value: 87.11557232168404 - type: euclidean_spearman value: 87.40944677043365 - type: manhattan_pearson value: 87.10395398212532 - type: manhattan_spearman value: 87.35977283466168 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84752475247525 - type: cos_sim_ap value: 96.49316696572335 - type: cos_sim_f1 value: 92.35352532274081 - type: cos_sim_precision value: 91.71597633136095 - type: cos_sim_recall value: 93.0 - type: dot_accuracy value: 99.77326732673268 - type: dot_ap value: 93.5497681978726 - type: dot_f1 value: 88.35582208895552 - type: dot_precision value: 88.31168831168831 - type: dot_recall value: 88.4 - type: euclidean_accuracy value: 99.84653465346534 - type: euclidean_ap value: 96.36378999360083 - type: euclidean_f1 value: 92.33052944087086 - type: euclidean_precision value: 91.38099902056807 - type: euclidean_recall value: 93.30000000000001 - type: manhattan_accuracy value: 99.84455445544555 - type: manhattan_ap value: 96.36035171233175 - type: manhattan_f1 value: 92.13260761999011 - type: manhattan_precision value: 91.1851126346719 - type: manhattan_recall value: 93.10000000000001 - type: max_accuracy value: 99.84752475247525 - type: max_ap value: 96.49316696572335 - type: max_f1 value: 92.35352532274081 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.26828396018358 - type: cos_sim_ap value: 77.79878217023162 - type: cos_sim_f1 value: 71.0425694621463 - type: cos_sim_precision value: 68.71301775147928 - type: cos_sim_recall value: 73.53562005277044 - type: dot_accuracy value: 84.01978899684092 - type: dot_ap value: 66.12134149171163 - type: dot_f1 value: 63.283507097098365 - type: dot_precision value: 60.393191081275475 - type: dot_recall value: 66.46437994722955 - type: euclidean_accuracy value: 87.24444179531503 - type: euclidean_ap value: 77.84821131946212 - type: euclidean_f1 value: 71.30456661215247 - type: euclidean_precision value: 68.1413801394566 - type: euclidean_recall value: 74.77572559366754 - type: manhattan_accuracy value: 87.19079692436074 - type: manhattan_ap value: 77.78054941055291 - type: manhattan_f1 value: 71.13002127393318 - type: manhattan_precision value: 67.65055939062128 - type: manhattan_recall value: 74.9868073878628 - type: max_accuracy value: 87.26828396018358 - type: max_ap value: 77.84821131946212 - type: max_f1 value: 71.30456661215247 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.91023402025847 - type: cos_sim_ap value: 85.94088151184411 - type: cos_sim_f1 value: 78.25673997223645 - type: cos_sim_precision value: 74.45433059919367 - type: cos_sim_recall value: 82.46843239913767 - type: dot_accuracy value: 87.91865564481701 - type: dot_ap value: 82.75373957440969 - type: dot_f1 value: 75.97383507276201 - type: dot_precision value: 72.67294713160854 - type: dot_recall value: 79.5888512473052 - type: euclidean_accuracy value: 88.8539604921023 - type: euclidean_ap value: 85.71590936389937 - type: euclidean_f1 value: 77.82902261742242 - type: euclidean_precision value: 74.7219270279844 - type: euclidean_recall value: 81.20572836464429 - type: manhattan_accuracy value: 88.78992509799356 - type: manhattan_ap value: 85.70200619366904 - type: manhattan_f1 value: 77.85875848203065 - type: manhattan_precision value: 72.94315506222671 - type: manhattan_recall value: 83.48475515860795 - type: max_accuracy value: 88.91023402025847 - type: max_ap value: 85.94088151184411 - type: max_f1 value: 78.25673997223645 --- # bge-large-en-v1.5-quant
latency
[DeepSparse](https://github.com/neuralmagic/deepsparse) is able to improve latency performance on a 10 core laptop by 3X and up to 5X on a 16 core AWS instance. ## Usage This is the quantized (INT8) ONNX variant of the [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) embeddings model accelerated with [Sparsify](https://github.com/neuralmagic/sparsify) for quantization and [DeepSparseSentenceTransformers](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers) for inference. ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import DeepSparseSentenceTransformer model = DeepSparseSentenceTransformer('zeroshot/bge-large-en-v1.5-quant', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).