Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,548 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
This is the sparse ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export and Neural Magic's [Sparsify](https://account.neuralmagic.com/signin?client_id=d04a5f0c-983d-11ed-88a6-971073f187d3&return_to=https%3A//accounts.neuralmagic.com/v1/connect/authorize%3Fscope%3Dsparsify%3Aread%2Bsparsify%3Awrite%2Buser%3Aapi-key%3Aread%2Buser%3Aprofile%3Awrite%2Buser%3Aprofile%3Aread%26response_type%3Dcode%26code_challenge_method%3DS256%26redirect_uri%3Dhttps%3A//apps.neuralmagic.com/sparsify/oidc/callback.html%26state%3Da9b466a6193c4a7b92cba469408d2495%26client_id%3Dd04a5f0c-983d-11ed-88a6-971073f187d3%26code_challenge%3DP0EkmKBpplTb7crJOGS8YLSwT8UH-BeuD0wuE4JTORQ%26response_mode%3Dquery) for One-Shot quantization and unstructured pruning (50%).
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: bge-small-en-v1.5-sparse
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: Classification
|
9 |
+
dataset:
|
10 |
+
type: mteb/amazon_counterfactual
|
11 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
12 |
+
config: en
|
13 |
+
split: test
|
14 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
15 |
+
metrics:
|
16 |
+
- type: accuracy
|
17 |
+
value: 70.71641791044776
|
18 |
+
- type: ap
|
19 |
+
value: 32.850850647310004
|
20 |
+
- type: f1
|
21 |
+
value: 64.48101916414805
|
22 |
+
- task:
|
23 |
+
type: Classification
|
24 |
+
dataset:
|
25 |
+
type: mteb/amazon_polarity
|
26 |
+
name: MTEB AmazonPolarityClassification
|
27 |
+
config: default
|
28 |
+
split: test
|
29 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 83.33962500000001
|
33 |
+
- type: ap
|
34 |
+
value: 78.28706349240106
|
35 |
+
- type: f1
|
36 |
+
value: 83.27426715603062
|
37 |
+
- task:
|
38 |
+
type: Classification
|
39 |
+
dataset:
|
40 |
+
type: mteb/amazon_reviews_multi
|
41 |
+
name: MTEB AmazonReviewsClassification (en)
|
42 |
+
config: en
|
43 |
+
split: test
|
44 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 40.988
|
48 |
+
- type: f1
|
49 |
+
value: 40.776679545648506
|
50 |
+
- task:
|
51 |
+
type: STS
|
52 |
+
dataset:
|
53 |
+
type: mteb/biosses-sts
|
54 |
+
name: MTEB BIOSSES
|
55 |
+
config: default
|
56 |
+
split: test
|
57 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
58 |
+
metrics:
|
59 |
+
- type: cos_sim_pearson
|
60 |
+
value: 79.64892774481326
|
61 |
+
- type: cos_sim_spearman
|
62 |
+
value: 78.953003817029
|
63 |
+
- type: euclidean_pearson
|
64 |
+
value: 78.92456838230683
|
65 |
+
- type: euclidean_spearman
|
66 |
+
value: 78.56504316985354
|
67 |
+
- type: manhattan_pearson
|
68 |
+
value: 79.21436359014227
|
69 |
+
- type: manhattan_spearman
|
70 |
+
value: 78.66263575501259
|
71 |
+
- task:
|
72 |
+
type: Classification
|
73 |
+
dataset:
|
74 |
+
type: mteb/banking77
|
75 |
+
name: MTEB Banking77Classification
|
76 |
+
config: default
|
77 |
+
split: test
|
78 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
79 |
+
metrics:
|
80 |
+
- type: accuracy
|
81 |
+
value: 81.25
|
82 |
+
- type: f1
|
83 |
+
value: 81.20841448916138
|
84 |
+
- task:
|
85 |
+
type: Classification
|
86 |
+
dataset:
|
87 |
+
type: mteb/emotion
|
88 |
+
name: MTEB EmotionClassification
|
89 |
+
config: default
|
90 |
+
split: test
|
91 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
92 |
+
metrics:
|
93 |
+
- type: accuracy
|
94 |
+
value: 41.665
|
95 |
+
- type: f1
|
96 |
+
value: 37.601137843331244
|
97 |
+
- task:
|
98 |
+
type: Classification
|
99 |
+
dataset:
|
100 |
+
type: mteb/imdb
|
101 |
+
name: MTEB ImdbClassification
|
102 |
+
config: default
|
103 |
+
split: test
|
104 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
105 |
+
metrics:
|
106 |
+
- type: accuracy
|
107 |
+
value: 74.8052
|
108 |
+
- type: ap
|
109 |
+
value: 68.92588517572685
|
110 |
+
- type: f1
|
111 |
+
value: 74.66801685854456
|
112 |
+
- task:
|
113 |
+
type: Classification
|
114 |
+
dataset:
|
115 |
+
type: mteb/mtop_domain
|
116 |
+
name: MTEB MTOPDomainClassification (en)
|
117 |
+
config: en
|
118 |
+
split: test
|
119 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
120 |
+
metrics:
|
121 |
+
- type: accuracy
|
122 |
+
value: 91.2220702234382
|
123 |
+
- type: f1
|
124 |
+
value: 90.81687856852439
|
125 |
+
- task:
|
126 |
+
type: Classification
|
127 |
+
dataset:
|
128 |
+
type: mteb/mtop_intent
|
129 |
+
name: MTEB MTOPIntentClassification (en)
|
130 |
+
config: en
|
131 |
+
split: test
|
132 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
133 |
+
metrics:
|
134 |
+
- type: accuracy
|
135 |
+
value: 69.39124487004105
|
136 |
+
- type: f1
|
137 |
+
value: 51.8350043424968
|
138 |
+
- task:
|
139 |
+
type: Classification
|
140 |
+
dataset:
|
141 |
+
type: mteb/amazon_massive_intent
|
142 |
+
name: MTEB MassiveIntentClassification (en)
|
143 |
+
config: en
|
144 |
+
split: test
|
145 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
146 |
+
metrics:
|
147 |
+
- type: accuracy
|
148 |
+
value: 69.80497646267652
|
149 |
+
- type: f1
|
150 |
+
value: 67.34213899244814
|
151 |
+
- task:
|
152 |
+
type: Classification
|
153 |
+
dataset:
|
154 |
+
type: mteb/amazon_massive_scenario
|
155 |
+
name: MTEB MassiveScenarioClassification (en)
|
156 |
+
config: en
|
157 |
+
split: test
|
158 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
159 |
+
metrics:
|
160 |
+
- type: accuracy
|
161 |
+
value: 74.54270342972428
|
162 |
+
- type: f1
|
163 |
+
value: 74.02802500235784
|
164 |
+
- task:
|
165 |
+
type: STS
|
166 |
+
dataset:
|
167 |
+
type: mteb/sickr-sts
|
168 |
+
name: MTEB SICK-R
|
169 |
+
config: default
|
170 |
+
split: test
|
171 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
172 |
+
metrics:
|
173 |
+
- type: cos_sim_pearson
|
174 |
+
value: 80.89215288990194
|
175 |
+
- type: cos_sim_spearman
|
176 |
+
value: 74.386413188675
|
177 |
+
- type: euclidean_pearson
|
178 |
+
value: 78.83679563989534
|
179 |
+
- type: euclidean_spearman
|
180 |
+
value: 74.29328198771996
|
181 |
+
- type: manhattan_pearson
|
182 |
+
value: 78.77968796707641
|
183 |
+
- type: manhattan_spearman
|
184 |
+
value: 74.20887429784696
|
185 |
+
- task:
|
186 |
+
type: STS
|
187 |
+
dataset:
|
188 |
+
type: mteb/sts12-sts
|
189 |
+
name: MTEB STS12
|
190 |
+
config: default
|
191 |
+
split: test
|
192 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
193 |
+
metrics:
|
194 |
+
- type: cos_sim_pearson
|
195 |
+
value: 78.31858821914498
|
196 |
+
- type: cos_sim_spearman
|
197 |
+
value: 72.2217008523832
|
198 |
+
- type: euclidean_pearson
|
199 |
+
value: 75.38901061978429
|
200 |
+
- type: euclidean_spearman
|
201 |
+
value: 71.81255767675184
|
202 |
+
- type: manhattan_pearson
|
203 |
+
value: 75.49472202181288
|
204 |
+
- type: manhattan_spearman
|
205 |
+
value: 71.96322588726144
|
206 |
+
- task:
|
207 |
+
type: STS
|
208 |
+
dataset:
|
209 |
+
type: mteb/sts13-sts
|
210 |
+
name: MTEB STS13
|
211 |
+
config: default
|
212 |
+
split: test
|
213 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
214 |
+
metrics:
|
215 |
+
- type: cos_sim_pearson
|
216 |
+
value: 79.48334648997455
|
217 |
+
- type: cos_sim_spearman
|
218 |
+
value: 80.99654029572798
|
219 |
+
- type: euclidean_pearson
|
220 |
+
value: 80.46546523970035
|
221 |
+
- type: euclidean_spearman
|
222 |
+
value: 80.90646216980744
|
223 |
+
- type: manhattan_pearson
|
224 |
+
value: 80.35474057857608
|
225 |
+
- type: manhattan_spearman
|
226 |
+
value: 80.8141299909659
|
227 |
+
- task:
|
228 |
+
type: STS
|
229 |
+
dataset:
|
230 |
+
type: mteb/sts14-sts
|
231 |
+
name: MTEB STS14
|
232 |
+
config: default
|
233 |
+
split: test
|
234 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
235 |
+
metrics:
|
236 |
+
- type: cos_sim_pearson
|
237 |
+
value: 79.73826970784727
|
238 |
+
- type: cos_sim_spearman
|
239 |
+
value: 76.9926870133034
|
240 |
+
- type: euclidean_pearson
|
241 |
+
value: 79.6386542120984
|
242 |
+
- type: euclidean_spearman
|
243 |
+
value: 77.05041986942253
|
244 |
+
- type: manhattan_pearson
|
245 |
+
value: 79.61799508502459
|
246 |
+
- type: manhattan_spearman
|
247 |
+
value: 77.07169617647067
|
248 |
+
- task:
|
249 |
+
type: STS
|
250 |
+
dataset:
|
251 |
+
type: mteb/sts15-sts
|
252 |
+
name: MTEB STS15
|
253 |
+
config: default
|
254 |
+
split: test
|
255 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
256 |
+
metrics:
|
257 |
+
- type: cos_sim_pearson
|
258 |
+
value: 83.93999019426069
|
259 |
+
- type: cos_sim_spearman
|
260 |
+
value: 85.21166521594695
|
261 |
+
- type: euclidean_pearson
|
262 |
+
value: 84.97207676326357
|
263 |
+
- type: euclidean_spearman
|
264 |
+
value: 85.40726578482739
|
265 |
+
- type: manhattan_pearson
|
266 |
+
value: 85.0386693192183
|
267 |
+
- type: manhattan_spearman
|
268 |
+
value: 85.49230945586409
|
269 |
+
- task:
|
270 |
+
type: STS
|
271 |
+
dataset:
|
272 |
+
type: mteb/sts16-sts
|
273 |
+
name: MTEB STS16
|
274 |
+
config: default
|
275 |
+
split: test
|
276 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
277 |
+
metrics:
|
278 |
+
- type: cos_sim_pearson
|
279 |
+
value: 80.8133974034008
|
280 |
+
- type: cos_sim_spearman
|
281 |
+
value: 82.82919022688844
|
282 |
+
- type: euclidean_pearson
|
283 |
+
value: 81.92587923760179
|
284 |
+
- type: euclidean_spearman
|
285 |
+
value: 82.86629450518863
|
286 |
+
- type: manhattan_pearson
|
287 |
+
value: 81.98232365999253
|
288 |
+
- type: manhattan_spearman
|
289 |
+
value: 82.94313939920296
|
290 |
+
- task:
|
291 |
+
type: STS
|
292 |
+
dataset:
|
293 |
+
type: mteb/sts17-crosslingual-sts
|
294 |
+
name: MTEB STS17 (en-en)
|
295 |
+
config: en-en
|
296 |
+
split: test
|
297 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
298 |
+
metrics:
|
299 |
+
- type: cos_sim_pearson
|
300 |
+
value: 86.12872422642363
|
301 |
+
- type: cos_sim_spearman
|
302 |
+
value: 87.77672179979807
|
303 |
+
- type: euclidean_pearson
|
304 |
+
value: 87.76172961705947
|
305 |
+
- type: euclidean_spearman
|
306 |
+
value: 87.9891393339215
|
307 |
+
- type: manhattan_pearson
|
308 |
+
value: 87.78863663568221
|
309 |
+
- type: manhattan_spearman
|
310 |
+
value: 88.08297053203866
|
311 |
+
- task:
|
312 |
+
type: STS
|
313 |
+
dataset:
|
314 |
+
type: mteb/sts22-crosslingual-sts
|
315 |
+
name: MTEB STS22 (en)
|
316 |
+
config: en
|
317 |
+
split: test
|
318 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
319 |
+
metrics:
|
320 |
+
- type: cos_sim_pearson
|
321 |
+
value: 58.82824030232733
|
322 |
+
- type: cos_sim_spearman
|
323 |
+
value: 64.17079382633538
|
324 |
+
- type: euclidean_pearson
|
325 |
+
value: 61.31505225602925
|
326 |
+
- type: euclidean_spearman
|
327 |
+
value: 64.05080034530694
|
328 |
+
- type: manhattan_pearson
|
329 |
+
value: 61.77095758943306
|
330 |
+
- type: manhattan_spearman
|
331 |
+
value: 64.14475973774933
|
332 |
+
- task:
|
333 |
+
type: STS
|
334 |
+
dataset:
|
335 |
+
type: mteb/stsbenchmark-sts
|
336 |
+
name: MTEB STSBenchmark
|
337 |
+
config: default
|
338 |
+
split: test
|
339 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
340 |
+
metrics:
|
341 |
+
- type: cos_sim_pearson
|
342 |
+
value: 81.39239803497064
|
343 |
+
- type: cos_sim_spearman
|
344 |
+
value: 81.76637354520439
|
345 |
+
- type: euclidean_pearson
|
346 |
+
value: 82.98008209033587
|
347 |
+
- type: euclidean_spearman
|
348 |
+
value: 82.18662536188657
|
349 |
+
- type: manhattan_pearson
|
350 |
+
value: 82.9630328314908
|
351 |
+
- type: manhattan_spearman
|
352 |
+
value: 82.13726553603003
|
353 |
+
- task:
|
354 |
+
type: PairClassification
|
355 |
+
dataset:
|
356 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
357 |
+
name: MTEB SprintDuplicateQuestions
|
358 |
+
config: default
|
359 |
+
split: test
|
360 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
361 |
+
metrics:
|
362 |
+
- type: cos_sim_accuracy
|
363 |
+
value: 99.8019801980198
|
364 |
+
- type: cos_sim_ap
|
365 |
+
value: 94.58629018512772
|
366 |
+
- type: cos_sim_f1
|
367 |
+
value: 89.84771573604061
|
368 |
+
- type: cos_sim_precision
|
369 |
+
value: 91.23711340206185
|
370 |
+
- type: cos_sim_recall
|
371 |
+
value: 88.5
|
372 |
+
- type: dot_accuracy
|
373 |
+
value: 99.74950495049505
|
374 |
+
- type: dot_ap
|
375 |
+
value: 92.5761214576951
|
376 |
+
- type: dot_f1
|
377 |
+
value: 87.09841917389087
|
378 |
+
- type: dot_precision
|
379 |
+
value: 88.86576482830385
|
380 |
+
- type: dot_recall
|
381 |
+
value: 85.39999999999999
|
382 |
+
- type: euclidean_accuracy
|
383 |
+
value: 99.80495049504951
|
384 |
+
- type: euclidean_ap
|
385 |
+
value: 94.56231673602272
|
386 |
+
- type: euclidean_f1
|
387 |
+
value: 90.02531645569621
|
388 |
+
- type: euclidean_precision
|
389 |
+
value: 91.17948717948718
|
390 |
+
- type: euclidean_recall
|
391 |
+
value: 88.9
|
392 |
+
- type: manhattan_accuracy
|
393 |
+
value: 99.8009900990099
|
394 |
+
- type: manhattan_ap
|
395 |
+
value: 94.5775591647447
|
396 |
+
- type: manhattan_f1
|
397 |
+
value: 89.86384266263238
|
398 |
+
- type: manhattan_precision
|
399 |
+
value: 90.64089521871821
|
400 |
+
- type: manhattan_recall
|
401 |
+
value: 89.1
|
402 |
+
- type: max_accuracy
|
403 |
+
value: 99.80495049504951
|
404 |
+
- type: max_ap
|
405 |
+
value: 94.58629018512772
|
406 |
+
- type: max_f1
|
407 |
+
value: 90.02531645569621
|
408 |
+
- task:
|
409 |
+
type: Classification
|
410 |
+
dataset:
|
411 |
+
type: mteb/toxic_conversations_50k
|
412 |
+
name: MTEB ToxicConversationsClassification
|
413 |
+
config: default
|
414 |
+
split: test
|
415 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
416 |
+
metrics:
|
417 |
+
- type: accuracy
|
418 |
+
value: 67.43820000000001
|
419 |
+
- type: ap
|
420 |
+
value: 12.899489312331003
|
421 |
+
- type: f1
|
422 |
+
value: 52.03468121072981
|
423 |
+
- task:
|
424 |
+
type: Classification
|
425 |
+
dataset:
|
426 |
+
type: mteb/tweet_sentiment_extraction
|
427 |
+
name: MTEB TweetSentimentExtractionClassification
|
428 |
+
config: default
|
429 |
+
split: test
|
430 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
431 |
+
metrics:
|
432 |
+
- type: accuracy
|
433 |
+
value: 57.475947934352
|
434 |
+
- type: f1
|
435 |
+
value: 57.77676730676238
|
436 |
+
- task:
|
437 |
+
type: PairClassification
|
438 |
+
dataset:
|
439 |
+
type: mteb/twittersemeval2015-pairclassification
|
440 |
+
name: MTEB TwitterSemEval2015
|
441 |
+
config: default
|
442 |
+
split: test
|
443 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
444 |
+
metrics:
|
445 |
+
- type: cos_sim_accuracy
|
446 |
+
value: 83.94230196101806
|
447 |
+
- type: cos_sim_ap
|
448 |
+
value: 67.00916556336148
|
449 |
+
- type: cos_sim_f1
|
450 |
+
value: 63.046014257939085
|
451 |
+
- type: cos_sim_precision
|
452 |
+
value: 61.961783439490446
|
453 |
+
- type: cos_sim_recall
|
454 |
+
value: 64.16886543535621
|
455 |
+
- type: dot_accuracy
|
456 |
+
value: 83.18531322644095
|
457 |
+
- type: dot_ap
|
458 |
+
value: 63.112896030267066
|
459 |
+
- type: dot_f1
|
460 |
+
value: 59.06565656565657
|
461 |
+
- type: dot_precision
|
462 |
+
value: 56.63438256658596
|
463 |
+
- type: dot_recall
|
464 |
+
value: 61.715039577836414
|
465 |
+
- type: euclidean_accuracy
|
466 |
+
value: 83.94230196101806
|
467 |
+
- type: euclidean_ap
|
468 |
+
value: 67.19856676674463
|
469 |
+
- type: euclidean_f1
|
470 |
+
value: 63.08428413691571
|
471 |
+
- type: euclidean_precision
|
472 |
+
value: 58.9543682641596
|
473 |
+
- type: euclidean_recall
|
474 |
+
value: 67.83641160949868
|
475 |
+
- type: manhattan_accuracy
|
476 |
+
value: 83.91845979614949
|
477 |
+
- type: manhattan_ap
|
478 |
+
value: 66.9845327263072
|
479 |
+
- type: manhattan_f1
|
480 |
+
value: 62.693323274236135
|
481 |
+
- type: manhattan_precision
|
482 |
+
value: 59.884698534710544
|
483 |
+
- type: manhattan_recall
|
484 |
+
value: 65.77836411609499
|
485 |
+
- type: max_accuracy
|
486 |
+
value: 83.94230196101806
|
487 |
+
- type: max_ap
|
488 |
+
value: 67.19856676674463
|
489 |
+
- type: max_f1
|
490 |
+
value: 63.08428413691571
|
491 |
+
- task:
|
492 |
+
type: PairClassification
|
493 |
+
dataset:
|
494 |
+
type: mteb/twitterurlcorpus-pairclassification
|
495 |
+
name: MTEB TwitterURLCorpus
|
496 |
+
config: default
|
497 |
+
split: test
|
498 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
499 |
+
metrics:
|
500 |
+
- type: cos_sim_accuracy
|
501 |
+
value: 88.0777738968448
|
502 |
+
- type: cos_sim_ap
|
503 |
+
value: 84.19747786536
|
504 |
+
- type: cos_sim_f1
|
505 |
+
value: 75.91830995817077
|
506 |
+
- type: cos_sim_precision
|
507 |
+
value: 69.84671107949033
|
508 |
+
- type: cos_sim_recall
|
509 |
+
value: 83.14598090545118
|
510 |
+
- type: dot_accuracy
|
511 |
+
value: 87.14246904955951
|
512 |
+
- type: dot_ap
|
513 |
+
value: 82.37528804640529
|
514 |
+
- type: dot_f1
|
515 |
+
value: 74.40963166732163
|
516 |
+
- type: dot_precision
|
517 |
+
value: 69.4127841098447
|
518 |
+
- type: dot_recall
|
519 |
+
value: 80.18170619032954
|
520 |
+
- type: euclidean_accuracy
|
521 |
+
value: 88.08359529630924
|
522 |
+
- type: euclidean_ap
|
523 |
+
value: 84.22633217661986
|
524 |
+
- type: euclidean_f1
|
525 |
+
value: 76.09190339866403
|
526 |
+
- type: euclidean_precision
|
527 |
+
value: 72.70304390517605
|
528 |
+
- type: euclidean_recall
|
529 |
+
value: 79.81213427779488
|
530 |
+
- type: manhattan_accuracy
|
531 |
+
value: 88.08359529630924
|
532 |
+
- type: manhattan_ap
|
533 |
+
value: 84.18362004611083
|
534 |
+
- type: manhattan_f1
|
535 |
+
value: 76.08789625360231
|
536 |
+
- type: manhattan_precision
|
537 |
+
value: 71.49336582724072
|
538 |
+
- type: manhattan_recall
|
539 |
+
value: 81.3135201724669
|
540 |
+
- type: max_accuracy
|
541 |
+
value: 88.08359529630924
|
542 |
+
- type: max_ap
|
543 |
+
value: 84.22633217661986
|
544 |
+
- type: max_f1
|
545 |
+
value: 76.09190339866403
|
546 |
license: mit
|
547 |
---
|
548 |
This is the sparse ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export and Neural Magic's [Sparsify](https://account.neuralmagic.com/signin?client_id=d04a5f0c-983d-11ed-88a6-971073f187d3&return_to=https%3A//accounts.neuralmagic.com/v1/connect/authorize%3Fscope%3Dsparsify%3Aread%2Bsparsify%3Awrite%2Buser%3Aapi-key%3Aread%2Buser%3Aprofile%3Awrite%2Buser%3Aprofile%3Aread%26response_type%3Dcode%26code_challenge_method%3DS256%26redirect_uri%3Dhttps%3A//apps.neuralmagic.com/sparsify/oidc/callback.html%26state%3Da9b466a6193c4a7b92cba469408d2495%26client_id%3Dd04a5f0c-983d-11ed-88a6-971073f187d3%26code_challenge%3DP0EkmKBpplTb7crJOGS8YLSwT8UH-BeuD0wuE4JTORQ%26response_mode%3Dquery) for One-Shot quantization and unstructured pruning (50%).
|