Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
---
|
6 |
+
|
7 |
+
# gemma-2-9b-it-FP8
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
* <h3 style="display: inline;">Model Architecture:</h3> Based on and identical to the gemma-2-9b-it architecture
|
11 |
+
* <h3 style="display: inline;">Model Optimizations:</h3> Weights and activations quantized to FP8
|
12 |
+
* <h3 style="display: inline;">Release Date:</h3> July 8, 2024
|
13 |
+
* <h3 style="display: inline;">Model Developers:</h3> Neural Magic
|
14 |
+
|
15 |
+
gemma-2-9b-it quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
|
16 |
+
Calibrated with 1 repeat of each token in the tokenizer in random order to achieve 100% performance recovery on the Open LLM Benchmark evaluations.
|
17 |
+
Reduces space on disk by ~50%.
|
18 |
+
Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
|
19 |
+
|
20 |
+
|
21 |
+
## Usage and Creation
|
22 |
+
Produced using AutoFP8 with random tokens as calibration, based on [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
23 |
+
|
24 |
+
```python
|
25 |
+
from datasets import load_dataset
|
26 |
+
from transformers import AutoTokenizer
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
|
30 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
31 |
+
|
32 |
+
MODEL_DIR = "google/gemma-2-9b-it"
|
33 |
+
final_model_dir = MODEL_DIR.split("/")[-1]
|
34 |
+
|
35 |
+
CONTEXT_LENGTH = 4096
|
36 |
+
NUM_SAMPLES = 512
|
37 |
+
NUM_REPEATS = 1
|
38 |
+
|
39 |
+
pretrained_model_dir = MODEL_DIR
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=CONTEXT_LENGTH)
|
41 |
+
tokenizer.pad_token = tokenizer.eos_token
|
42 |
+
|
43 |
+
tokenizer_num_tokens = len(list(tokenizer.get_vocab().values()))
|
44 |
+
total_token_samples = NUM_REPEATS * tokenizer_num_tokens
|
45 |
+
num_random_samp = -(-total_token_samples // CONTEXT_LENGTH)
|
46 |
+
|
47 |
+
input_ids = np.tile(np.arange(tokenizer_num_tokens), NUM_REPEATS + 1)[:num_random_samp * CONTEXT_LENGTH]
|
48 |
+
np.random.shuffle(input_ids)
|
49 |
+
input_ids = input_ids.reshape(num_random_samp, CONTEXT_LENGTH)
|
50 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int64).to("cuda")
|
51 |
+
|
52 |
+
quantize_config = BaseQuantizeConfig(
|
53 |
+
quant_method="fp8",
|
54 |
+
activation_scheme="static",
|
55 |
+
)
|
56 |
+
|
57 |
+
examples = input_ids
|
58 |
+
|
59 |
+
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config=quantize_config)
|
60 |
+
|
61 |
+
model.quantize(examples)
|
62 |
+
|
63 |
+
quantized_model_dir = f"{final_model_dir}-FP8"
|
64 |
+
model.save_quantized(quantized_model_dir)
|
65 |
+
```
|
66 |
+
|
67 |
+
Evaluated through vLLM>=0.5.1 with the following script:
|
68 |
+
|
69 |
+
```bash
|
70 |
+
#!/bin/bash
|
71 |
+
|
72 |
+
# Example usage:
|
73 |
+
# CUDA_VISIBLE_DEVICES=0 ./eval_openllm.sh "neuralmagic/gemma-2-9b-it-FP8" "tensor_parallel_size=1,max_model_len=4096,add_bos_token=True,gpu_memory_utilization=0.7"
|
74 |
+
|
75 |
+
export MODEL_DIR=${1}
|
76 |
+
export MODEL_ARGS=${2}
|
77 |
+
|
78 |
+
declare -A tasks_fewshot=(
|
79 |
+
["arc_challenge"]=25
|
80 |
+
["winogrande"]=5
|
81 |
+
["truthfulqa_mc2"]=0
|
82 |
+
["hellaswag"]=10
|
83 |
+
["mmlu"]=5
|
84 |
+
["gsm8k"]=5
|
85 |
+
)
|
86 |
+
|
87 |
+
declare -A batch_sizes=(
|
88 |
+
["arc_challenge"]="auto"
|
89 |
+
["winogrande"]="auto"
|
90 |
+
["truthfulqa_mc2"]="auto"
|
91 |
+
["hellaswag"]="auto"
|
92 |
+
["mmlu"]=1
|
93 |
+
["gsm8k"]="auto"
|
94 |
+
)
|
95 |
+
|
96 |
+
for TASK in "${!tasks_fewshot[@]}"; do
|
97 |
+
NUM_FEWSHOT=${tasks_fewshot[$TASK]}
|
98 |
+
BATCH_SIZE=${batch_sizes[$TASK]}
|
99 |
+
lm_eval --model vllm \
|
100 |
+
--model_args pretrained=$MODEL_DIR,$MODEL_ARGS \
|
101 |
+
--tasks ${TASK} \
|
102 |
+
--num_fewshot ${NUM_FEWSHOT} \
|
103 |
+
--write_out \
|
104 |
+
--show_config \
|
105 |
+
--device cuda \
|
106 |
+
--batch_size ${BATCH_SIZE} \
|
107 |
+
--output_path="results/${TASK}"
|
108 |
+
done
|
109 |
+
```
|
110 |
+
|
111 |
+
|
112 |
+
## Evaluation
|
113 |
+
|
114 |
+
Evaluated on the Open LLM Leaderboard evaluations through vLLM.
|
115 |
+
|
116 |
+
### Open LLM Leaderboard evaluation scores
|
117 |
+
| | gemma-2-9b-it | neuralmagic/gemma-2-9b-it-FP8<br>(this model) |
|
118 |
+
| :------------------: | :----------------------: | :------------------------------------------------: |
|
119 |
+
| arc-c<br>25-shot | 71.50 | 71.50 |
|
120 |
+
| hellaswag<br>10-shot | 81.91 | 81.70 |
|
121 |
+
| mmlu<br>5-shot | 72.28 | 71.99 |
|
122 |
+
| truthfulqa<br>0-shot | 60.32 | 60.52 |
|
123 |
+
| winogrande<br>5-shot | 77.11 | 78.37 |
|
124 |
+
| gsm8k<br>5-shot | 76.26 | 76.87 |
|
125 |
+
| **Average<br>Accuracy** | **73.23** | **73.49** |
|
126 |
+
| **Recovery** | **100%** | **100.36%** |
|