nm-research commited on
Commit
29ef852
·
verified ·
1 Parent(s): b50cd3a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +256 -1
README.md CHANGED
@@ -25,7 +25,7 @@ library_name: transformers
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
28
- It achieves an average score of xxxx on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves xxxx.
29
 
30
  ### Model Optimizations
31
 
@@ -224,3 +224,258 @@ evalplus.evaluate \
224
  |-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
225
  | HumanEval Pass@1 | 71.00 | 70.50 |
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
28
+ It achieves an average score of 70.26 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30.
29
 
30
  ### Model Optimizations
31
 
 
224
  |-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
225
  | HumanEval Pass@1 | 71.00 | 70.50 |
226
 
227
+
228
+ ## Inference Performance
229
+
230
+
231
+ This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
232
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
233
+
234
+ ### Single-stream performance (measured with vLLM version 0.6.6.post1)
235
+ <table>
236
+ <tr>
237
+ <td></td>
238
+ <td></td>
239
+ <td></td>
240
+ <th style="text-align: center;" colspan="7" >Latency (s)</th>
241
+ </tr>
242
+ <tr>
243
+ <th>GPU class</th>
244
+ <th>Model</th>
245
+ <th>Speedup</th>
246
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
247
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
248
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
249
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
250
+ <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
251
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
252
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
253
+ </tr>
254
+ <tr>
255
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
256
+ <td>granite-3.1-8b-instruct</td>
257
+ <td></td>
258
+ <td>28.3</td>
259
+ <td>3.7</td>
260
+ <td>28.8</td>
261
+ <td>3.8</td>
262
+ <td>3.6</td>
263
+ <td>7.2</td>
264
+ <td>15.7</td>
265
+ </tr>
266
+ <tr>
267
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
268
+ <td>1.60</td>
269
+ <td>17.7</td>
270
+ <td>2.3</td>
271
+ <td>18.0</td>
272
+ <td>2.4</td>
273
+ <td>2.2</td>
274
+ <td>4.5</td>
275
+ <td>10.0</td>
276
+ </tr>
277
+ <tr>
278
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
279
+ <td>2.61</td>
280
+ <td>10.3</td>
281
+ <td>1.5</td>
282
+ <td>10.7</td>
283
+ <td>1.5</td>
284
+ <td>1.3</td>
285
+ <td>2.7</td>
286
+ <td>6.6</td>
287
+ </tr>
288
+ <tr>
289
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
290
+ <td>granite-3.1-8b-instruct</td>
291
+ <td></td>
292
+ <td>25.8</td>
293
+ <td>3.4</td>
294
+ <td>26.2</td>
295
+ <td>3.4</td>
296
+ <td>3.3</td>
297
+ <td>6.5</td>
298
+ <td>14.2</td>
299
+ </tr>
300
+ <tr>
301
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
302
+ <td>1.50</td>
303
+ <td>17.4</td>
304
+ <td>2.3</td>
305
+ <td>16.9</td>
306
+ <td>2.2</td>
307
+ <td>2.2</td>
308
+ <td>4.4</td>
309
+ <td>9.8</td>
310
+ </tr>
311
+ <tr>
312
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
313
+ <td>2.48</td>
314
+ <td>10.0</td>
315
+ <td>1.4</td>
316
+ <td>10.4</td>
317
+ <td>1.5</td>
318
+ <td>1.3</td>
319
+ <td>2.5</td>
320
+ <td>6.2</td>
321
+ </tr>
322
+ <tr>
323
+ <td style="vertical-align: middle;" rowspan="3" >A100</td>
324
+ <td>granite-3.1-8b-instruct</td>
325
+ <td></td>
326
+ <td>13.6</td>
327
+ <td>1.8</td>
328
+ <td>13.7</td>
329
+ <td>1.8</td>
330
+ <td>1.7</td>
331
+ <td>3.4</td>
332
+ <td>7.3</td>
333
+ </tr>
334
+ <tr>
335
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
336
+ <td>1.31</td>
337
+ <td>10.4</td>
338
+ <td>1.3</td>
339
+ <td>10.5</td>
340
+ <td>1.4</td>
341
+ <td>1.3</td>
342
+ <td>2.6</td>
343
+ <td>5.6</td>
344
+ </tr>
345
+ <tr>
346
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
347
+ <td>1.80</td>
348
+ <td>7.3</td>
349
+ <td>1.0</td>
350
+ <td>7.4</td>
351
+ <td>1.0</td>
352
+ <td>0.9</td>
353
+ <td>1.9</td>
354
+ <td>4.3</td>
355
+ </tr>
356
+ </table>
357
+
358
+
359
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
360
+ <table>
361
+ <tr>
362
+ <td></td>
363
+ <td></td>
364
+ <td></td>
365
+ <th style="text-align: center;" colspan="7" >Maximum Throughput (Queries per Second)</th>
366
+ </tr>
367
+ <tr>
368
+ <th>GPU class</th>
369
+ <th>Model</th>
370
+ <th>Speedup</th>
371
+ <th>Code Completion<br>prefill: 256 tokens<br>decode: 1024 tokens</th>
372
+ <th>Docstring Generation<br>prefill: 768 tokens<br>decode: 128 tokens</th>
373
+ <th>Code Fixing<br>prefill: 1024 tokens<br>decode: 1024 tokens</th>
374
+ <th>RAG<br>prefill: 1024 tokens<br>decode: 128 tokens</th>
375
+ <th>Instruction Following<br>prefill: 256 tokens<br>decode: 128 tokens</th>
376
+ <th>Multi-turn Chat<br>prefill: 512 tokens<br>decode: 256 tokens</th>
377
+ <th>Large Summarization<br>prefill: 4096 tokens<br>decode: 512 tokens</th>
378
+ </tr>
379
+ <tr>
380
+ <td style="vertical-align: middle;" rowspan="3" >A5000</td>
381
+ <td>granite-3.1-8b-instruct</td>
382
+ <td></td>
383
+ <td>0.8</td>
384
+ <td>3.1</td>
385
+ <td>0.4</td>
386
+ <td>2.5</td>
387
+ <td>6.7</td>
388
+ <td>2.7</td>
389
+ <td>0.3</td>
390
+ </tr>
391
+ <tr>
392
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
393
+ <td>1.71</td>
394
+ <td>1.3</td>
395
+ <td>5.2</td>
396
+ <td>0.9</td>
397
+ <td>4.0</td>
398
+ <td>10.5</td>
399
+ <td>4.4</td>
400
+ <td>0.5</td>
401
+ </tr>
402
+ <tr>
403
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
404
+ <td>1.46</td>
405
+ <td>1.3</td>
406
+ <td>3.9</td>
407
+ <td>0.8</td>
408
+ <td>2.9</td>
409
+ <td>8.2</td>
410
+ <td>3.6</td>
411
+ <td>0.5</td>
412
+ </tr>
413
+ <tr>
414
+ <td style="vertical-align: middle;" rowspan="3" >A6000</td>
415
+ <td>granite-3.1-8b-instruct</td>
416
+ <td></td>
417
+ <td>1.3</td>
418
+ <td>5.1</td>
419
+ <td>0.9</td>
420
+ <td>4.0</td>
421
+ <td>0.3</td>
422
+ <td>4.3</td>
423
+ <td>0.6</td>
424
+ </tr>
425
+ <tr>
426
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
427
+ <td>1.39</td>
428
+ <td>1.8</td>
429
+ <td>7.0</td>
430
+ <td>1.3</td>
431
+ <td>5.6</td>
432
+ <td>14.0</td>
433
+ <td>6.3</td>
434
+ <td>0.8</td>
435
+ </tr>
436
+ <tr>
437
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
438
+ <td>1.09</td>
439
+ <td>1.9</td>
440
+ <td>4.8</td>
441
+ <td>1.0</td>
442
+ <td>3.8</td>
443
+ <td>10.0</td>
444
+ <td>5.0</td>
445
+ <td>0.6</td>
446
+ </tr>
447
+ <tr>
448
+ <td style="vertical-align: middle;" rowspan="3" >A100</td>
449
+ <td>granite-3.1-8b-instruct</td>
450
+ <td></td>
451
+ <td>3.1</td>
452
+ <td>10.7</td>
453
+ <td>2.1</td>
454
+ <td>8.5</td>
455
+ <td>20.6</td>
456
+ <td>9.6</td>
457
+ <td>1.4</td>
458
+ </tr>
459
+ <tr>
460
+ <td>granite-3.1-8b-instruct-quantized.w8a8<br>(this model)</td>
461
+ <td>1.23</td>
462
+ <td>3.8</td>
463
+ <td>14.2</td>
464
+ <td>2.1</td>
465
+ <td>11.4</td>
466
+ <td>25.9</td>
467
+ <td>12.1</td>
468
+ <td>1.7</td>
469
+ </tr>
470
+ <tr>
471
+ <td>granite-3.1-8b-instruct-quantized.w4a16</td>
472
+ <td>0.96</td>
473
+ <td>3.4</td>
474
+ <td>9.0</td>
475
+ <td>2.6</td>
476
+ <td>7.2</td>
477
+ <td>18.0</td>
478
+ <td>8.8</td>
479
+ <td>1.3</td>
480
+ </tr>
481
+ </table>